Cubeoctahedron EG-Models Home

image cubeoctahedron_Preview.gif
Electronic Geometry Model No. 2000.09.011


Ulrich Reitebuch


The cubeoctahedron is one of the thirteen Archimedean solids.

The cubeoctahedron has 12 vertices, 14 faces and 24 edges. It is generated by truncating the vertices of a cube or of an octahedron at 1/2 edge-length. The cubeoctahedron is a semiregular polyhedron. Here the distance from vertex to center point is scaled to 1. Thus every vertex has one coordinate with the absolute value 0 and two coordinates with the absolute value sqrt(2) /2 ; the edge-length is 1.

Model produced with: JavaView 2.00.005

Keywords cubeoctahedron; Archimedean solid; semiregular polyhedron
MSC-2000 Classification 51M20
Zentralblatt No. 01683015


  1. H. S. M. Coxeter: Regular Polytopes, Collier-Macmillan Ltd. London (1963).
  2. Magnus J. Wenniger: Polyhedron Models, Cambridge University Press (1970).
  3. Alan Holden: Shape, Space and Symmetry, Columbia University Press New York/London (1971).
  4. Michael Joswig, Ewgenij Gawrilow: Polymake,
  5. Konrad Polthier, Samy Khadem, Eike Preuss, Ulrich Reitebuch: JavaView Home Page,


Submission information

Submitted: Fri Sep 1 16:24:12 MET 2000.
Accepted: Thu Oct 25 14:19:08 MDT 2001.

Author's Address

Ulrich Reitebuch
Technische Universität Berlin
Fachbereich Mathematik, MA 8-5
Straße des 17. Juni 136
D-10623 Berlin, Germany