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Abstract. We describe the theory of complete mean curvature one surfaces

in H3 and give a detailed description of some basic examples. This note is
intended to complement the three EG-Models 2001.01.048 and 2001.01.049

and 2001.01.050 by the authors on this subject.

1. Introduction

There is a wide body of knowledge about minimal surfaces in Euclidean 3-space
R3, and there is a canonical local isometric correspondence (sometimes called the
Lawson correspondence, canonical correspondence, or cousin correspondence) be-
tween minimal surfaces in R3 and CMC-1 (constant mean curvature one) surfaces
in hyperbolic 3-space H3 (the complete simply-connected 3-manifold of constant
sectional curvature −1). This has naturally led to the recent interest in and devel-
opment of CMC-1 surfaces in H3 in the last decade. There are now many known
examples, and here we give a detailed description of some of the most basic ones.
By this canonical local isometric correspondence, minimal immersions in R3 are

locally equivalent to CMC-1 immersions in H3. But there are interesting differences
between these two types of immersions on the global level. There are period prob-
lems for an immersion of a non-simply-connected domain, which might be solved for
the immersion into one 3-space, but not the other. Solvability of the period prob-
lems is usually more likely in the H3 case, leading to a wider variety of surfaces
there. For example, a genus 0 surface with finite total curvature and two embedded
ends exists as a minimal surface in R3 only if it is a surface of revolution, but it
may exist as a CMC-1 surface in H3 without being a surface of revolution (see
Example 4.3).

2. General comments on total absolute curvature

The total absolute curvature of a minimal surface inR3 is equal to the area of the
image (counted with multiplicity) of the Gauss map of the surface. Furthermore,
as the Gauss map of a complete conformally parametrized finite-total-curvature
minimal surface is meromorphic at each end, the area of the Gauss image must be
an integer multiple of 4π.
However, unlike minimal surfaces in R3, we have a choice of two different Gauss

maps for CMC-1 surfaces in H3: the hyperbolic Gauss map G and the secondary
Gauss map g. The true total absolute curvature is the area of the image of g, but
since g might not be single-valued on the surface, the total curvature might not be
an integer multiple of 4π. The Osserman inequality does not hold for the true total
absolute curvature. The weaker Cohn-Vossen inequality is the best general lower
bound for true absolute total curvature (with equality never holding [UY1]).
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The area of the image of G, which we call the dual total absolute curvature, is the
true total curvature of the dual CMC-1 surface (which we define in Section 3) inH3.
G is single-valued on the surface, and so the dual total absolute curvature is always
an integer multiple of 4π, like the case of minimal surfaces in R3. Furthermore,
the dual total curvature satisfies not only the Cohn-Vossen inequality, but also the
Osserman inequality [UY5, Yu2] (see also (3.13) in Section 3).

3. Basic preliminaries

Let f : M → H3 be a conformal CMC-1 immersion of a Riemann surface M
into H3. Let ds2, dA and K denote the induced metric, induced area element and
Gaussian curvature, respectively. Then K ≤ 0 and dσ2 := (−K) ds2 is a conformal
pseudometric of constant curvature 1 onM . We call this pseudometric’s developing
map g : M̃(:= the universal cover of M) → CP 1 = C ∪ {∞} the secondary Gauss
map of f . Namely, g is a conformal map so that its pull-back of the Fubini-Study
metric of CP 1 equals dσ2:

dσ2 = (−K) ds2 = 4 dg dḡ
(1 + gḡ)2

.(3.1)

Such a map g is determined by dσ2 uniquely up to the change

g �→ a � g :=
a11g + a12

a21g + a22
, a =

(
a11 a12

a21 a22

)
∈ SU(2) .(3.2)

Since dσ2 is invariant under the deck transformation group π1(M ), there is a rep-
resentation

ρg : π1(M ) −→ PSU(2) such that g ◦ τ−1 = ρg(τ) � g
(
τ ∈ π1(M )

)
,(3.3)

where PSU(2) = SU(2)/{± id}. The metric dσ2 is called reducible if the image of
ρg can be diagonalized simultaneously, and is called irreducible otherwise. In the
case dσ2 is reducible, we call it is H3-reducible if the image of ρg is the identity,
and is called H1-reducible otherwise. We call a CMC-1 immersion f : M → H3

H1-reducible (resp. H3-reducible) if the corresponding pseudometric dσ2 is H1-
reducible (resp. H3 -reducible). For details on reducibility, see [RUY1], for example.
In addition to g, two other holomorphic invariants G and Q are closely related to

geometric properties of CMC-1 surfaces. The hyperbolic Gauss map G : M → CP 1

is holomorphic and is defined geometrically by identifying the ideal boundary ofH3

with CP 1: G(p) is the asymptotic class of the normal geodesic of f (M ) starting at
f (p) and oriented in the mean curvature vector’s direction. The Hopf differential
Q is a holomorphic symmetric 2-differential on M such that −Q is the (2, 0)-part
of the complexified second fundamental form. The Gauss equation implies

ds2 · dσ2 = 4Q ·Q ,(3.4)

where · means the symmetric product. Moreover, these invariants are related by
S(g)− S(G) = 2Q ,(3.5)

where S(·) denotes the Schwarzian derivative:

S(h) :=

[(
h′′

h′

)′
− 1
2

(
h′′

h′

)2
]
dz2

(
′ =

d

dz

)
with respect to a local complex coordinate z on M .



CMC-1 SURFACES 3

In terms of g and Q, the induced metric ds2 and complexification of the second
fundamental form h are

ds2 = (1 + |g|2)2
∣∣∣∣ Qdg

∣∣∣∣2 , h = −Q−Q+ ds2 .

Since K ≤ 0, we can define the total absolute curvature as

TA(f ) :=
∫

M

(−K) dA ∈ [0,+∞] .

Then TA(f ) is the area of the image of M in CP 1 of the secondary Gauss map
g. TA(f ) is generally not an integer multiple of 4π — for catenoid cousins [Bry,
Example 2] and their δ-fold covers, TA(f ) admits any positive real number.
For each conformal CMC-1 immersion f : M → H3, there is a holomorphic null

immersion F : M̃ → SL(2,C), the lift of f , satisfying the differential equation

dF = F

(
g −g2

1 −g
)
ω , ω =

Q

dg
(3.6)

so that f = FF ∗, where F ∗ = tF [Bry, UY1]. Here we consider

H3 = SL(2,C)/ SU(2) = {aa∗ | a ∈ SL(2,C)} .
We call a pair (g, ω) the Weierstrass data of f . The lift F is said to be null because
detF−1dF , the pull-back of the Killing form of SL(2,C) by F , vanishes identically
on M . Conversely, for a holomorphic null immersion F : M̃ → SL(2,C), f := FF ∗

is a conformal CMC-1 immersion of M̃ into H3. If F = (Fij), equation (3.6) implies

g = −dF12

dF11
= −dF22

dF21
,(3.7)

and it is shown in [Bry] that

G =
dF11

dF21
=
dF12

dF22
.(3.8)

The inverse matrix F−1 is also a holomorphic null immersion, and produces a new
CMC-1 immersion f# = F−1(F−1)∗ : M̃ → H3, called the dual of f [UY5]. The
induced metric ds2# and the Hopf differential Q# of f# are

ds2# = (1 + |G|2)2
∣∣∣∣ QdG

∣∣∣∣2 , Q# = −Q .(3.9)

So ds2# and Q# are well-defined on M itself, even though f# might be defined
only on M̃ . This duality between f and f# interchanges the roles of the hyperbolic
Gauss map G and secondary Gauss map g. In particular, one has

dF F−1 = −(F−1)−1d(F−1) =
(
G −G2

1 −G
)

Q

dG
.(3.10)

Hence dFF−1 is single-valued on M , whereas F−1dF generally is not.
Since ds2# is single-valued onM , we can define the dual total absolute curvature

TA(f#) :=
∫

M

(−K#) dA#,



4 WAYNE ROSSMAN, MASAAKI UMEHARA, AND KOTARO YAMADA

where K# (≤ 0) and dA# are the Gaussian curvature and area element of ds2#,
respectively. As

dσ2# := (−K#)ds2# =
4 dGdG

(1 + |G|2)2(3.11)

is a pseudo-metric of constant curvature 1 with developing map G, TA(f#) is the
area of the image of G on CP 1 = S2. The following assertion is important for us:

Lemma 3.1 ([UY5, Yu2]). The Riemannian metric ds2# is complete (resp. non-
degenerate) if and only if ds2 is complete (resp. nondegenerate).

We now assume that the induced metric ds2 (and consequently ds2#) on M is
complete and that either TA(f ) <∞ or TA(f#) <∞, hence there exists a compact
Riemann surfaceMγ of genus γ and a finite set of points {p1, . . ., pn} ⊂Mγ (n ≥ 1)
so that M is biholomorphic to Mγ \ {p1, . . ., pn} (see Theorem 9.1 of [Oss]). We
call the points pj the ends of f .
Unlike the Gauss map for minimal surface with TA < ∞ in R3, the hyperbolic

Gauss map G of the surface might not extend to a meromorphic function on Mγ ,
as the Enneper cousin (Example 4.2) shows. However, the Hopf differential Q does
extend to a meromorphic differential onMγ [Bry]. We say an end pj (j = 1, . . ., n)
of a CMC-1 immersion is regular if G is meromorphic at pj . When TA(f ) <∞, an
end pj is regular precisely when the order of Q at pj is at least −2, and otherwise G
has an essential singularity at pj [UY1]. Moreover, the pseudometric dσ2 as in (3.1)
has a conical singularity at each end pj [Bry]. For a definition of conical singularity,
see [UY3, UY7].

Analogue of the Osserman inequality. For a CMC-1 surface of genus γ with
n ends, the second and third authors showed that the equality of the Cohn-Vossen
inequality for the total absolute curvature never holds [UY1]:

1
2π
TA(f )> −χ(M ) = 2(γ − 2) + n .(3.12)

The catenoid cousins (Example 4.3) show that this inequality is the best possible.
On the other hand, the dual total absolute curvature satisfies an Osserman-type

inequality [UY5]:
1
2π
TA(f#) ≥ −χ(M ) + n = 2(γ + n− 1) .(3.13)

Moreover, equality holds exactly when all the ends are embedded: This follows by
noting that equality is equivalent to all ends being regular and embedded ([UY5]),
and that any embedded end must be regular (proved recently by Collin, Hauswirth
and Rosenberg [CHR1] and independently by Yu [Yu3]).

Effects of transforming the lift F . Here we consider the change F̂ = aFb−1 of
the lift F , where a, b ∈ SL(2,C). Then F̂ is also a holomorphic null immersion, and
the hyperbolic Gauss map Ĝ, the secondary Gauss map ĝ and the Hopf differential
Q̂ of f = F̂ F̂ ∗ are given by (see [UY3])

Ĝ = a � G, ĝ = b � g, Q̂ = Q .(3.14)

In particular, the change F̂ = aF moves the surface by a rigid motion of H3, and
does not change g and Q. Furthermore, for any b ∈ SU(2), the change F̂ = Fb does
not change the surface at all.
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By choosing a suitable rigid motion a ∈ SL(2,C) of the surface in H3, the
expression for G can often be simplified, using

Ĝ = a � G =
a11G+ a12

a21G+ a22
, (aij)i,j=1,2 ∈ SL(2,C) .(3.15)

4. Basic examples

Example 4.1 (Horosphere). The horosphere is the only flat (and consequently
totally umbilic) CMC-1 surface in H3. It’s Weierstrass data can be given by

g = 0, ω = a dz (a ∈ C \ {0}) .
The holomorphic lift F : C → SL(2,C) of the surface with initial condition F (0) =
id is given by

F =
(
1 0
az 1

)
.

In particular the hyperbolic Gauss map is a constant function, as well as the sec-
ondary Gauss map g = 0. So the total curvature and the dual total curvature of
the horosphere are both equal to zero. Any flat or totally umbilic CMC-1 surfaces
are parts of this surface. Planes in R3 are the corresponding minimal surfaces with
the same Weierstrass data (g, ω) = (0, a dz).
Since the horosphere is simply-connected, it is H3-reducible.

Example 4.2 (Enneper cousin and dual of Enneper cousin). The Enneper cousins
are given in [Bry], with the same Weierstrass data as the Enneper surface in R3:

g = z, ω = a dz
(
a ∈ C \ {0}) .

Hence the Enneper cousins are isometric to minimal Enneper surfaces.
The holomorphic lift F : C → SL(2,C) of the surface with initial condition

F (0) = id is given by

F =
(
cosh(az) a−1 sinh(az)− z cosh(az)
a sinh(az) cosh(az)− az sinh(az)

)
.

In particular the hyperbolic Gauss map G is given by

G = a−1 tanh(az) ,

and hence the end at z = ∞ is irregular. So the Enneper cousins have complete
induced metrics of total absolute curvature 4π and infinite dual total absolute
curvature. If one takes the inverse of F , one gets the duals of the Enneper cousins.
Since

Fd(F−1) = −dFF−1 =
(−a cosh(az) sinh(az) sinh2(az)

−a2 cosh2(az) a cosh(az) sinh(az)

)
,

the Weierstrass data (g#, ω#) of the dual of the Enneper cousin is given by

g# = a−1 tanh(az), ω# = a2 cosh2(az) dz .

This dual surface also has a complete induced metric, but now with infinite total
absolute curvature (see Lemma 3.1).
Since the Enneper cousins and their duals are simply-connected, they are H3-

reducible.
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Example 4.3 (Catenoid cousins and warped catenoid cousins). Here we describe
the catenoid cousins and the warped catenoid cousins. The catenoid cousins are the
only CMC-1 surfaces of revolution [Bry]. The warped catenoid cousins [UY1, RUY3]
are less well known.
CMC-1 surfaces of genus 0 with two regular ends are classified in Theorem 6.2

in [UY1]. Here we describe a slightly refined version of this classification, which
can also be found in [RUY4]: A complete conformal CMC-1 immersion f : M =
C \ {0} → H3 with regular ends has the following Weierstrass data

g =
δ2 − l2

4l
zl + b , ω = z−l−1dz ,(4.1)

with l > 0, δ ∈ Z+, and l �= δ, and b ≥ 0, where the case b > 0 occurs only when
l ∈ Z+. When b = 0 and δ = 1, the surface is called a catenoid cousin, which
is rotationally symmetric. (The Weierstrass data of the catenoid cousin is often
written as g = zµ and ω = (1−µ2)z−µ−1 dz/(4µ). This is equivalent to (4.1) for b =
0 and δ = 1 and l = µ by a coordinate change z �→ ((1 − µ2)/4µ)(1/µ)z.) Catenoid
cousins are embedded when 0 < l < 1 and have one circle of self-intersection when
l > 1. When b = 0, f is a δ-fold cover of a catenoid cousin. When b > 0 (then
automatically l is a positive integer), we call f a warped catenoid cousin, and its
discrete symmetry group is the natural Z2 extension of the dihedral group Dl.
Furthermore, the catenoid cousins and warped catenoid cousins can be written
explicitly as

f = FF ∗, F = F0B ,

where

F0 =

√
δ2 − l2

δ

 1
l − δ

z(δ−l)/2 δ − l

4l
z(l+δ)/2

1
l + δ

z−(l+δ)/2 −(l + δ)
4l

z(l−δ)/2

 and B =
(
1 −b
0 1

)
.

In particular, the hyperbolic Gauss map and Hopf differential are given by

G = zδ, Q =
δ2 − l2

4z2
dz2 ,

which are equal to the Gauss map and Hopf differential of (δ-fold covers of) the
catenoids in R3. The dual total curvature of a catenoid cousin is 4π, but its total
curvature is 4πl, which can take any value in (0, 4π) ∪ (4π,∞). On the other
hand, the total absolute curvature and the dual total absolute curvature of warped
catenoid cousins are always integer multiples of 4π.
The catenoid cousins are generally H1-reducible, except when l is an integer, in

which case they areH3-reducible. The warped catenoid cousins are allH3-reducible.
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