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1. INTRODUCTION

We define three-dimensional space forms as the unique complete simply-connected
3-dimensional Riemann manifolds R®, H3 and S3, of constant sectional curvature
0, -1 and 1, respectively. A more concrete description of space forms is given in
Section 2.

First we briefly explain the meaning of constant mean cuvature (CMC) here: We
consider a smooth orientable surface F in a three-dimensional space form, and we
fix a direction for the unit normal field N on F. N is called the Gauss map of the
surface. At each point P € F we can consider the minimum and maximum of the
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directional curvatures (the eigenvalues of the operator dN on the tangent space),
and these are the principal curvatures at P. We set H to be the average of the
principal curvatures and call it the mean curvature. We call F a constant mean
curvature (CMC) surface if H is the same at every point on F.

It is well known that soap films have the property of attaining the least area
with respect to the fixed volumes they bound, and soap films are examples of CMC
surfaces. Mathematically, we have the following property:

H = constant = compact portions of the surface are critical values
for boundary-preserving, volume-preserving variations.

The sphere is a simple example of a CMC surface because all principal curvatures
are the same on the sphere. The sphere is an important example because it is a
closed CMC surface. For a long time, there were no known closed CMC surfaces
besides the sphere, and we had the following Hopf conjecture:

There are no closed CMC surfaces different from the standard
sphere.

This conjecture had been thought to be correct, because:

(1) Hopf showed that the only genus-zero closed CMC surfaces in R® are
spheres.
(2) Alexandrov showed that the only embedded closed CMC surfaces in R® are
spheres.
However, Wente showed existence of immersed CMC tori in 1984 and this led to
renewed interest in the field. Then Wente, Abresch, Pinkall, Sterling, and Bobenko
found all the CMC tori in R>.

With this renewed interest, bubbletons in R?® have been closely examined in [26],
[17] and [24]. In this paper, we analyze bubbleton surfaces in all three space forms
R? and S® and H?, using the DPW method. Bubbleton surfaces are CMC surfaces
made from Béacklund transformations (in Bianchi’s sense) of round cylinders. The
surface is shaped like a cylinder with attached bubbles, thus it is called a bubbleton.
The parallel constant positive Gaussian curvature surface of the bubbleton is well
known. It was first found by Sievert [23], thus it is called the Sievert surface.

With respect to the DPW method, the Backlund transformation is a dressing
action on loop groups and this dressing action is described by elements of the
simplest possible type like those of Terng and Uhlenbeck [25]. Using these elements

we find an explicit immersion formula and solve the period problems
for bubbletons in R* and S° and H®.

More generally, we can do the Backlund transformation for any surfaces. So

we can solve period problems for the Bicklund transformations of
general Delaunay surfaces, which we do here.

In the R® case, this is also done in [26], [17].

In order to apply the DPW method, we first note that classical surface theory
can be rewritten in modern fashion using quaternions. More concretely, we write
quaternions using 2x 2 matrices and identify 3-dimensional Euclidean space with the
space of imaginary quaternions. Then the classical surface theory can be described
using 2 x 2 matrices. For CMC surfaces, the Gauss-Codazzi equations (G-C) are the
compatibility conditions for a system of equations of Lax pair type and allow a one-
parameter family of deformations preserving H and the metric that changes only
the Hopf differential. (This parameter is called the spectral parameter. Existence
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of this spectral parameter means we can say that we are working with an integrable
equation (see [3]).) In this framework we have a CMC immersion formula called
the Sym-Bobenko formula. The solutions of this Lax pair are 2 x 2 special unitary
matrices in SU(2), and we call them the extended frames for the CMC surfaces, and
they are used in the Sym-Bobenko formula. More concretely, this SU(2) solution
depends on the spectral parameter and thus lies in the loop group ASU(2). The
spectral parameter then becomes the loop parameter.

The DPW method was created by Dorfmeister and Pedit and Wu (see [8]) for
making CMC surfaces in R®>. The DPW method uses loop group theory involv-
ing the loop groups ASL(2,C), ASU(2) and AL SL(2,C) to be defined later and
is related to the methods of integrable systems. The DPW method also (equiv-
alently) makes extended frames corresponding to harmonic maps from Riemann
surfaces to the unit sphere S2. Using holomorphic 1-forms, the DPW method con-
structs holomorphic maps to ASL(2,C) and after that constructs extended frames
corresponding to harmonic maps. More concretely, one first gives Asl(2, C)-matrix-
valued holomorphic 1-forms called holomorphic potentials. Next one solves a linear
first-order (homogeneous) ordinary differential equation whose coefficient is the
above holomorphic potential. The solution of this equation is in ASL(2,C) when
the initial condition is chosen in ASL(2,C). We then decompose ASL(2,C) to
ASU(2) x ASL,(2,C) via Iwasawa splitting, producing an ASU(2) element from
an ASL(2,C) element. This element in ASU(2) is an extended frame of a CMC
surface. Finally, the Sym-Bobenko formula produces the CMC immersion. The ad-
vantages of this DPW approach are that we can deal with the asymptotic behaviors
and period problems for CMC surfaces.

The paper is organized as follows: In Section 2, we give basic notations and
results for all space forms CMC surfaces using 2 by 2 matrices. In Section 3, we give
the DPW method. In Section 4, we give simple examples (cylinders and Delaunay
surfaces) by the DPW construction. In Section 5, we give the construction and
explicit parametrization of CMC bubbletons using simple examples from Section
4, and we show equivalence of the simple type dressing and Bianchi’s Backlund
transformation, and we consider the parallel surface of the cylinder bubbletons.

Acknowledgements: The author thanks Takeshi Sasaki, Wayne Rossman, Franz
Pedit, Martin Killian, Nick Shmitt, Hongyou Wu, Junichi Inoguchi, Alexander
Bobenko, Josef Dorfmeister, Tim Hoffman.

2. LaX PAIRS FOR CMC SURFACES IN SPACE FORMS
The arguments in this section are similar to arguments in [1] and [19].

2.1. The space forms. S3, resp. H?3, is the unique complete simply connected
3-dimensional Riemannian manifold with constant sectional curvature +1, resp.
—1.

There are a variety of models for describing S® and H?. S? is the unit 3-sphere
in R* with the metric induced by R*, but for viewing graphics of CMC surfaces in
53, we shall stereographically project S$* from its north pole to the space R*U{oc}.
For H? we shall use the Lorentz model:

H? = {(t,2,y,2) € R¥" |2® +y* + 2> — > = =1, t > 0}
with the metric induced by R*', where R*' is the 4-dimensional Lorentz space
{(t7x>yaz) | t7$7yaz € R}
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FIGURE 1. CMC bubbletons in R3, S and H3. The R3 bubbleton
was first described in [26]. (The S® graphic here was made by N.
Schmitt [22])



BUBBLETON SURFACES IN SPACE FORMS VIA DPW 5

with the Lorentz metric

((t1,21,91,21), (t2, 22, Y2, 22)) = T12Z2 + Y1Ya2 + 2122 — t1ta .

This metric is not positive definite, but its restriction to the tangent space of H3
is positive definite. For viewing graphics of CMC surfaces in H2, we shall use the
Poincare model for H?, which is stereographic projection of the Minkowski model
in Lorentz space from the point (0,0,0,—1) to the 3-ball {(0,z,y,2) € R*!|2? +
v’ +22 <1} 2 {p=(z,y,2) € R*||p| <1},

2.2. Surfaces in the space forms. Before we describe the DPW representation
for CMC surfaces in Section 3, we show here that CMC surfaces in 3-dimensional
space forms are locally equivalent to solutions of a certain kind of Lax pair. Then
proving that the DPW recipe gives all CMC surfaces means showing that it gives
all possible solutions for this certain kind of Lax pair.

Let M be a Riemann surface and let f : M — M3 be a CMC conformal immer-
sion, where M? is either R® or S® or H3. Let ¥ be a simply-connected domain
in M with conformal coordinate z = x + iy defined on . We can consider the
restriction f|s of f to X, i.e.

f=f(22:T=>M =R>or S®or H®.

We write f as a function of both z and Z to emphasize that f is not holomorphic
in z.

Each of the three space forms lies isometrically in a vector space V: V is just
R? in the case M3 = R®; V = R* in the case M3 = S3; and V = R*! in the case
M3 = H3. Let (-,-) be the inner product associated to V', which is the Euclidean
inner product in the first two cases, and the Lorentz inner product in the third
case. We may also view f as a map into V, i.e.

f:S M3 CV=R3or R or R®'.

The derivatives f, = 0, f and f, = 0, f are vectors in the tangent space Ty, )V
of V at f(z,Zz). Because V is a vector space, V naturally corresponds to T, z)V,
so f; and f, can be viewed as lieing in V itself. So f. = (1/2)(f; —if,) and
fz = (1/2)(fz+if,) are defined in the complex extension V¢x = {c-v|c € C,v € V}
of V with inner product extended to {civi,covs) = cica{vi,v2) (which we also
denote by (-,-) and is not a true inner product on V(7). Since f is conformal, we
have
<fzafz) = <fiaf5> =0, <fzaf2> = 2¢™" )
where the right-most equation defines the function u : ¥ — R.
There is a natural notion of a unit normal vector N = N(z,2) € Ty, 5V =V

of f, defined by the properties

(1) (N,N) =1,

(2) N e Tf(zj)Mg, and
In each space form, the mean curvature of f is given by

1
(21) H= 26—2u<fz25N) )

which is constant, by assumption. We also define the Hopf differential to be
Q= <fzza N) .
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Because f exists as a surface in M3, u and H and Q satisfy the Gauss and Codazzi
equations for M3. For H constant, we will see that the Gauss and Codazzi equations
for M3 remain satisfied when Q is replaced by A=2Q) forany A € S* = {p € C| |p| =
1}. Hence, up to rigid motions, there is a unique surface f\ with metric determined
by u and with mean curvature H and Hopf differential A=2Q. (We use the notation
fx to state that f depends on J; it does not denote the derivative 0y f.) The surfaces
fr for A € S! form a one-parameter family called the associate family of f. The
parameter ) is called the spectral parameter and is essential to the DPW method.

We remark that in the cases of S® and H?3, we will actually be choosing @Q so
that it differs from the true Hopf differential by a particular constant factor.

2.3. The vector spaces V in terms of quaternions. Define the matrices

(=i 0 (01 (0 —i (1 0
%=1 —i)> *T\10) 27\ o) 7 \0o -1/"

We can think of Q = spanpg{iog, —io1, —io2, —io3} as the quaternions because it
has the quaternionic algebraic structure.

2.3.1. When M3 =V = R?, we associate M3 with the imaginary quaternions
Qrm = span g{—io1, —io2, —ioz} C Q by the map

(1'1,1,‘2,1'3) — T1=01+2Ty=02 +2x3=03 .

2 2 2
Then for X,Y € Qp,y, the inner product inherited from R is
(2.2) (X,Y) = —2-trace(XY) = +2 - trace(XY™) ,
where Y* := Y*. Also, any oriented orthonormal basis {X,Y,Z} of vectors of

M3 = 9y, satisfies

(2.3) X=F (%al) F', Y=F (%@) F', Z=F (%(73) P

for some F' € SU(2), and this F is unique up to sign. In other words, rotations of
R? fixing the origin are represented in the quaternionic representation Qr,, of R?
by matrices F' € SU(2).

2.3.2. When M3 = S3 and V = R?, we associate V with Q by the map
(z1,22,23,%4) = L1900 + XT2101 + T3i02 + T4i03 ,

so points (1, 2,23, 24) € V = R* are matrices of the form

a b
» =5,
where @ = x1 + ix4 and b = x3 + ix2. That is, they are matrices X that satisfy
(25) X = O'QXO'Q -

The inner product on Q inherited from V' is
(2.6) (X,Y) = (1/2) - trace(XY™) ,

where Y* := Y. Note that this inner product is the same as in (2.2), up to a factor
of 4.
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2.3.3. When M3 = H® and V = R®', we can associate V with the set of
self-adjoint matrices {X € May2 | X* = X} by the map
($0,$1,$2,$3) ERY 5 X = ZTot0g + 101 + T209 + T303 .

One can check that 02 X?0s = X! det X and the inner product inherited from V
is
(X,Y) = (—1/2)trace(XosY'as) ,
)
(X, X)=—det X,

for self-adjoint matrices X,Y.

2.4. The case M? = R®. Consider M® =V = R? in the quaternionic represen-
tation, with inner product (-,-) as in Section 2.3. Let f : M — R® be a CMC H

conformal immersion, and let f) be as in Section 2.2. By applying a homothety if
necessary, we may assume H = 1/2. So

(2.7) ((fr)zz, N) = ™.
Note that N here also now depends on A. We have
((FN)z (FA)z2) = ((FN) 2, (Fa)2z) = (N2, NY =0, ()2 (fa)z2) = 4ue™

(N, (fa)z) = =(N, (fa)zz) = =€, (N5, (f2):2) = =A72Q.
So

(f)\)zz = 2uz(fk)z + /\72QN ) (fk)zz = e2uN y (f)\)ZZ = 2“2(f/\)2 + )‘2QN7

N; = %(—(fx)z —A72Qe™*(fa)z), N:= %(—(fx)z —X2Qe™*"(f):) -
With 6 defined by A = e??, we define

_ (f)\):c _ (f)\)y
= 1] TG

Therefore
(F)z =—|(fa)z|(e1cosf + exsinB) , (fa)y = —|(fr)y|(e15in 8 — e2 cosb)

Since e1, es and N form an oriented orthonormal frame in R3, there exists an
F € SU(2) as in (2.3), depending on z, Z, and also on A, such that

28) e =F (%al> F', e=F (%az) F', N=F (%@) F'.

Note that here we are now writing e1, e2, and N in quaternionic form, rather than
in the vector form as above.

By applying a rigid motion to fy for each A € S! if necessary, we can fix
F(24,%4,2) = id for all X € S* for some fixed z, € ¥, i.e. we may assume that the
vectors e, ez, and N are the unit vectors in the positive z-axis, y-axis, and z-axis
directions, respectively, at the point z, for all A € S*.

We define

e - 0. (h)
(el 0 F 10, 0

sinf, e;=—

U:=FF,, V:.=F'F,.
By (2.8), we have

(2.9) (fr). = —ie"F (0 0 ) F71 ., (fa)s = —ietF (/\ 0) F~t.
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Then (f)\)zz = (f)\)ZZ implies that Vil — ‘/22 = —Uusx and U22 — U11 = —Uy and
A"V = —AUp2. Furthermore, (f)).z = €2“N implies Vo1 = Ae¥/2 and (f)).. =
2u,(fr): + A72QN implies Uy = e ¥A71Q/2 and (fa)zz = 2uz(fi): + A\2QN
implies V12 = —e~%A@/2. Since det F = 1, U and V are traceless, so U and V are
as in equation (2.12).

The compatibility condition for the existence of a solution F' to the Lax pair
(2.11) is F,; = F%,, in other words,

U: -V, -[U,V]=0

(also called the Maurer-Cartan equation) and this is equivalent to (2.10), which is
the Gauss and Codazzi equations for f. (So H=constant implies @ is holomorphic.)

Note that (2.10) still holds if @ is replaced with A=2Q for any A € S, which is
what allowed us to consider the entire associate family fy.

We have now seen that any CMC 1/2 surface f gives a solution to the Lax pair
(2.11) with U and V as in (2.12). One can check that the surface defined by the
Sym-Bobenko formula (2.13) has the same derivatives with respect to z and Z as
f does in (2.9) at A = 1. Hence the surface in (2.13) is the surface f, up to a
translation.

Conversely, starting with u and @Q satisfying (2.10) and taking a solution F' of
(2.11)-(2.12), note that f in (2.13) is a conformal CMC 1/2 immersion with metric
ds? = 4e**(dz? + dy?) and Hopf differential Q (because f. and f satisfy (2.9) at
A = 1. Furthermore, u satisfies (2.7), so by (2.1), H = 1 (using (2.12)).

We conclude that finding arbitrary CMC 1/2 surfaces is equivalent to finding
arbitrary integrable Lax pairs of the form (2.11) and their solutions, with U and V'
as in (2.12). Thus we have proven the following theorem, whose notations match
those of [8] and [9] and [15].

Theorem 2.1. Let u and @) solve
(2.10) du; —QQe M +e** =0, Q;=0,

and let F(z,2z,)) be a solution, which is in SU(2) for all X € S' and is complex
analytic in X\, of the system

(2.11) F,=FU, F;=FV
with
1 U, —eu)\t 1 (—u; —Qe ¥
s vl B )L vl o).
Define
-1 Z 0 —1 . —1
(2.13) f= TF 0 —i F~ —iMO\F)-F .
A=1
Then f is of the form
—1 -t  r+is
(2 1),

for reals v, s,t, and

(r,s,1)
is a conformal parametrization of a CMC 1/2 surface in R3, parametrized by z.
Furthermore, every CMC 1/2 conformal immersion in R? can be attained this way.
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2.5. The case M? = 3. Consider a conformal CMC H immersion f:M — M3 =
S3 € V = R* of a Riemann surface M, with (-,-) as in (2.6). Then

(£:f)=1.

Let us change the name of the local complex coordinate z to w, and let us change
the name of () to A. We have

<fwafw) = 2¢*" ) <f7N> = <fw:N) = (fLTHN> =0,
(N,NY=1, A= {(fuww,N).
One can show that if o = (f, fu, fo, N)!, then o satisfies

ow=Uo, og=Vo,

where
0 1 0 0 0 0 1 0
U= 0 2uy 0 A V= —2e% 0 0 2He™
T =2 0 0 2He? | 7 - 0 0 Qg A
0 -—-H FHde™ 0 0 Sde®™ —-H 0

Since H is constant, the compatibility condition
Uu—)—Vw+[U,V]:O,
implies that

N + 2e24(1 + H?) — %Aﬁe—% —0, Ag=0.

Making the change of variables z = 2v/1 + H2w and A = 2v/1 + H2e*¥( for a real
constant ¢, we find that (2.10) holds. The conclusion is that a CMC H conformal
immersion f into S® with conformal parameter w and metric 4e?“dwdw has another
conformal parameter z such that Q = 2v/1 + H2e 2% (f,., N) is holomorphic and
u satisfies the first equation in (2.10). Note that, with respect to the parameter z,
the metric is not represented by u (in the sense that 4e?“dzdz is nmot the metric)
and @ is not the Hopf differential (@) differs from the true Hopf differential by a
constant factor).
We now consider how to get a surface from given u, @), and H.

Theorem 2.2. Let u and Q solve (2.10) and let Fj(z,2,A = e ), j = 1,2, be
two solutions of the system (2.11)-(2.12) such that F(z,z,\) € SU(2) for all A € S*
and F(z,2z,\) is complex analytic in X. Define

-F Veilr2—1) 0 _1
f — 41 0 /ei("ﬂ*’m) 2
Then f is a conformal immersion with CMC H = cot(y; —72) into S®. Conversely,

every conformal immersion with CMC H = cot(y; — 72) into S* can be attained
this way.

Proof. We will use

T N

(2.15)

N—ip Ve 0 il
= 0 —Veilr1—2) 2

here. We will also need to consider the inner product more generally as: (X,Y) =
(1/2) - trace(X o2Y t03), not (X,Y) = (1/2) - trace(XY™).
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Show o3 fos = f and 03 Noy = N, so f, N € R*. Note that F € SU(2) implies
(1/2)trace(ff*) =1, so f € S3. Also, verify
<fZ’N> = <f27N) = <f7N> = <fZJfZ> = <f27f2> = 07

and

1 . 1 o .
<N7N) =1 ) (fzafz_) = §e2u Sln2(71 _’72) ’ (fzz:N> = 5@62 wSln(/Yl _'72) )
and

-1 : 1 .
faz = 762“ sin’ (1 — 7o) f + 562“ sin(y1 — y2) cos(y1 — 2)N .

If H is given by H = cot(y1 — 72), 2 = 2V/1+ H?>w = 2w/sin(y1 — 1), A =
(fww, N) = (2V1+ H2)%(f,.,N) = 2Qe*¥ /sin(y, — y2), then 0, = Uo, 045 = Vo
hold.

To prove the converse, one can argue as we did in the R® case. |

2.6. The case M3 = H3, with H > 1. Let f be a conformally immersed CMC
H > 1 surface in H3 with the name of the local coordinate changed from z to w.
We have

0:<N,f):<f,N):<fw,N):<fm,N), <N7N):]-:

<fw;fw> = 2¢” , A= <flUlU7N) .
Let us also change the name of Q to A. Let 0 = (f, fuw, fa, N)¢, one can show that

ow=Uo, og=Vo,

where
0 1 0 0 0 0 1 0
y=| 0 2uw 0 A V= 2e%v 0 0 2He™
T 2% 0 0 2He?™ |~ I 0 2ug A
0 —-H Fde > 0 0 FSAe ™ -H 0

Since H)1 is constant, the compatibility condition
Uu—)—Vw+[U,V]=O,
implies that

1, -
Quyp + 262 (H? — 1) — iAAe_Qu =0, Ap=0.

Making the change of variables z = 2¢/H2 — 1w and A = 2v/H?2 — 1e2¥(Q) for a
real constant ¢, we have that (2.10) holds. The conclusion is that a CMC H
conformal immersion into H® with H > 1 has a conformal parameter z such that
Q = 2/H? —1e 2% (f,,, N) is holomorphic and u satisfies the first equation in
(2.10).

We now consider how to get a surface from given u, @), and H.

Theorem 2.3. Let u and Q solve (2.10) and let F(z,2,A = e~%/2e~™) for some
real q be a solution of the system (2.11)-(2.12) such that F € SU(2) for all A € S*
and F is complex analytic in A\. Then

0 —ie”¥/?\ o=
(2.16) f=F (z’e’lﬂ 0 ) F-lo,

is a CMC H = cothq conformal immersion into H®. Conversely, all CMC H =
cothq conformal immersions into H® can be attained this way.
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Proof. We will need

0 —ie~ 12\ -,
N=F <_i64/2 0 )F g2

here.
Using the property o2 X¢oo = X ~!det X, check that

<N7f):<N7fZ)=<N7f2)=<fZJfZ)=<f27f2)=0

and
(N,N)y=1, (f.,f:)=(1/2)e*sinh’q.
Also
(o2 N) = 5Q6%¥ sinhg
and

1 1
fez = 562u sinh® g f + §€2u sinh g coshgN .

With z = 2V H? — 1w, A = 2¢/H? — 1e**¥(), and sinhq = 1/v/H2 — 1, then A =
(fww, N) and fuz = 2e2“f + 2e** cothqN, so H = cothg.
Note that

r=rov (700 ) 0 ) Fe (? ) -
_ g1 (6_(;1/2 6(5]/2) (F*)L

_ 1 e 9/2dd + e9/?bb  —ede~9/? — abed/?
" Jad — be|? \—cde~? — abe?/?  cce~? + age?/? | °

a b
F= ( d) .
Hence the diagonal of f is real and the off-diagonal terms are conjugate. Check

that (f, f) = —1, using 02 X0y = (X 1)L
The converse is proven similarly to the argument in the R® case. |

where

3. THE DPW RECIPE

We saw in Section 2 that finding CMC H # 0 surfaces in R® and CMC H
surfaces in S® and CMC H > 1 surfaces in H® is equivalent to finding integrable
Lax pairs of the form (2.11)-(2.12) and their solutions F. Then the surfaces are
found by using the Sym-Bobenko type formulas (2.13) and (2.15) and (2.16). So
to prove that the DPW recipe finds all of these types of surfaces, it is sufficient to
prove that the DPW recipe produces all integrable Lax pairs of the form (2.11)-
(2.12) and all their solutions F'. The goal of this section is to show how this is done
in [8].
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3.1. The loop groups. Let C, be the circle of radius r < 1 centered at the origin
in C.
Definition 1. For any r € (0,1] C R, we define the following loop groups:
(1) The twisted sl(2,C) r-loop algebra is
Apsl(2,C) = {A:C, =7 sl(2,C) | A(=A) = 03A(N\)os } .
(The condition A(—A) = o3A4(X\)o3 is why we call the loop group ”twisted”.)
(2) The twisted SL(2,C) r-loop group is
A, SL(2,C) = {¢: C, =7 SL(2,C) | $(=)) = 03¢0(N)os } .
(3) The twisted SU(2) r-loop group is
A SUQ2) ={F € A, SL(2,C) | F(1/))* = (F(\)) ',

F = F()) extends holomorphically to A for r < |A| < 77!

and continuously for r < |A\| < 77!}
~{F:C, - SL(2,C) | F = F()\) extends holomorphically to
A for r < |[A| €1 and continously for r < |\| <1 and F|¢, € SU(2) }.

When r = 1, we may abbreviate A; SU(2) to ASU(2). The condition in
A SU(2) that F' extends holomorphically is vacuous.
(4) The twisted plus r-loop group with R™ constant terms is

A, p+SL(2,C) ={B € A, SL(2,C) | B extends holomorphically to A for [A| <r

and continuously for || < 7, and B|x= = (g pgl) withp>01}.

When r = 1, we may abbreviate A | p+SL(2,C) to AL.SL(2,C).
(5) The twisted plus r-loop group with general constant terms is

Ay SL(2,C) = {B € A, SL(2,C) | B extends holomorphically to A for

|A| < r and continously for |A| <7 }.

(6) The twisted minus r-loop group with id constant terms is
A_,.SL(2,C) ={B € A.SL(2,C) | B extends holomorphically to A for
|A| > r and continously for |A\| > r, and Bly=cc =1id } .

3.2. Iwasawa and Birkhoff splittings. It is irrelevant how we topologize the loop
algebra and loop groups, as long as the smooth loops are contained in the topology,
since we will always be staying in the smooth category. However, to state the
next two splitting lemmas, we must choose a topology. Let us choose the topology
determined by the H® norm for some a > 1/2 (see [20]). With respect to this norm,
all of the above smooth loops will have finite norm. (Loops with poles will probably
not have finite norm.) We can then extend the above loop groups A, SL(2,C),
A, SU(2), A+,T,R+ SL(2,C), Ay ,SL(2,C) and A_ , .SL(2, C) to their completions
with respect to the H* norm. Then the notion of diffeomorphisms between these
loops groups, and also the notion of smooth (resp. real-analytic, complex-analytic)
dependence of the following splittings on z, makes sense.
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Lemma 3.1. (Iwasawa decomposition) For any r € (0,1], we have the follow-
ing real-analytic diffeomorphism globally defined from A,.SL(2,C) to A,.SU(2) x
AT,+,R+ SL(2,C): For any ¢ € A.SL(2,C), there exist unique F' € A, SU(2) and
B e Ay ,SL(2,C) so that
¢=FB.

We call this r-Twasawa splitting of ¢. We r = 1, we may call it simply Twasowa
splitting. Because the diffeomorphism is real-analytic, we know that if ¢ depends
real-analytically (resp. smoothly) on some parameter z, then F and B do as well.

Lemma 3.2. (Birkhoff decomposition) For any r € (0,1], we have the following
complez-analytic diffeomorphism defined from an open dense subsetU of A, SL(2,C)
to A_,SL(2,C) x Ay SL(2,C): For any ¢ € U, there exist unique B_ €
A_,.SL(2,C) and By € Ay »SL(2,C) so that

¢ = B,B_f_ .

We call this r-Birkhoff splitting of ¢. We r = 1, we may call it simply Birkhoff
splitting. Because the diffeomorphism is complex-analytic, we know that if ¢ de-
pends complex-analytically (resp. real-analytically, smoothly) on some parameter z,
then B_ and By do as well.

From now on, whenever we apply these splitting results, it is sufficient to simply
check that the loops we are splitting are smooth.

3.3. The DPW method. We now describe the DPW method. Let
(3.1) E=A(z,Ndz, A(z,\) € Asl(2,0),

where A := A(z,A) is holomorphic in both z and A for z € £ and A € C \ {0}.
Furthermore, we assume the following:

(3.2) A has a pole of order at most 1 at A =0,
) and the upper-right entry of A really does have a pole at A = 0.

We call £ a holomorphic potential.
In practice, when we wish to make specific examples of CMC surfaces, we will
write A in the form

A=A ()N + Ao(2) + A1(2)A + A2 (2) N + ...,

where the 4; = A; (2) € Maxs are holomorphic in z € ¥ and do not depend
on A. By (3.2), we must choose A_; so that its upper-right entry is never zero
on ¥. Because A € Asl(2,C), A; is off-diagonal (resp. diagonal) when j is odd
(resp. even). Furthermore, all A; are traceless. In fact, in all the example we later
consider, only finitely many of the A; will be nonzero.

Let ¢ be the solution to

dp=0¢, ¢(z) =id
for some base point z, € X. Then ¢ is holomorphic and
¢ € ASL(2,C) .
By Lemma 3.1 above, we can perform r-Iwasawa splitting, and write the result as

¢=FB.
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Remark. Because F € A, SU(2) and 05F = 0 we have
(FOO) ™ =UQ/NFEN")T", FQA/N). =UQ/N)(EFEQ/N),
and
(FO) Nz =VA/NEN), FQ/N):=VA/NEQ/N)
for all A € C. So (F(A\)*)~' = F(1/)) on S', and we have
(F(A/N)") ™ =FX) - AN,

where A(X) = id for all X € S and A(}) is independent of z and Z. Since F())
and (F(1/A)*)~! are both complex analytic in A, A()) is also. This implies that
A(XA) =1id for all A € C, and hence we have the reality condition

(3.3) F(L/A) = (F()) .

Proposition 3.3. Up to a conformal change of the coordinate z, F is a solution
to a Laxz pair of the form (2.11)-(2.12).

Proof. First, we define holomorphic a_1 = a_1(2) and b_; = b_1(2), and real
p=p(z7%) € R" by

0 a- 0
(A4)r=0 = (5_1 01> and Blx=o = (g p—l) .

If we use the new conformal coordinate

z
1
w =/ —dz,
20 2(171

which is really a new coordinate because a_; is never zero, we have that b_; changes
to /2, where we define @) to be @ := b_1/a_1, and a_; changes to 1/2. Using
® = F - B, we can rewrite U(A) as the following;:

U\ =F'F,=BAB™'! —-B7'B, = Z Up\F |
k=-1

V(\) =F7'F;=-B7'B, =) Vi),
k=0

where

One can then prove that

U(l/j\) = O'QV()\)O'Q 5
and therefore U(X) = U_1A~! 4+ Up and V(X) = Vp + V1A, where Uy = —V{ and
Vi = —U?t,, and the proof is done. O

Remark. When doing Iwasawa splitting, the condition that p € R' makes the
splitting ¢ = F'B unique. But actually it is OK to more generally allow that p € C
is not real. Then although the splitting becomes non-unique — let us call it ¢ = F'B
for some p = re® € C - it follows that

e—z’G 0 - ~ eiG 0
B_(O eiﬂ)Ba F_F(O e—z’O);

since the matrix diag(e?,e~%) is in SU(2). Thus F and F are not the same, but
using either one in equation (2.13) results in the same immersion f.
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Proposition 3.4. For any solution F € ASU(2), defined (need to say?) for all
z € ¥ and all X € C\ {0} with F(z.) = id, to a Laz pair of type (2.11)-(2.12),
there exists a holomorphic potential £ = Adz with A as in (3.1) and a solution
¢ € ASL(2,C) of dp = ¢ so that ¢ Iwasawa splits into ¢ = FB for some B €
ALSL(2,C). & is called the holomorphic potential of the CMC surface resulting
from F.

Proof. The wish to find a B € A, SL(2,C) so that (FB); = 0, and then define
¢ := FB and then show A := ¢~1¢, is of the form in (3.1). If (FB); = F:B +
FB; = FVB + FB; = 0 with V as in (2.12), then B; = —V B, and we need to
solve this for B. The existence of such a B follows from the dell bar problem.

Also, because V satisfies the twistedness condition, if B satisfies the twistedness
condition at one value of z for all A, then B satisfies the twistedness condition
everywhere. Therefore,

BeA,SL(2,C).

Since the equation for B is linear, B has no singularities for any z and A, and so
B~! also has no singularities for any z and .

Furthermore, F' and F~! always exist without singularities, because F' solves
(2.11)-(2.12) with nonsingular initial condition. In particular, defining

¢:=FB,

¢ and ¢~ ! are both holomorphic without singularities.
Define A by A = ¢~ '¢,. Then A is holomorphic in z and X for z € ¥ and
A e C\ {0}. Also,

M =Xo"1¢, =AB"UB+ \B7'B,
is bounded at A = 0, since B € Ay SL(2,C). Therefore A has at most a pole of
order 1 at A = 0, and so A is of the desired form (3.1). O
We have established the converse of DPW for a holomorphic potential.

Remark. In the above proof, if

B !5 B! (ewg’z) e—z'GO(z,Z))
for the right choice of 8(z, Z), we can change B so that By has positive reals on the
diagonal. Then 02 . )

F_’F< 0 e—i0(z:2)

but this does not change the surface (see the Sym-Bobenko formula (2.13)).

3.4. The meaning of dressing and gauging. Given a solution ¢ to d¢ = ¢¢, if
we define

¢=hy(\)-¢-pi(z2N),  hy,pp € A4 SL(2,0),
then the multiplication on the left by h4 is a dressing, and the multiplication on the
right by p; is a gauging. The matrix h; cannot depend on z. The matrix p; can

depend on z, but must have trivial monodromy about all loops in the z-domain.
Note that ¢ satisfies dp = @£, where

£=py'¢py +p dpy .
Hence,
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the dressing hy does not change the potential ¢, and changes only
the resulting surface.

Furthermore, jf we look at the Iwasawa splittings ¢ = F B and é = ﬁ‘B’, then the
change F' — F is affected only by h4, and is independent of p,, hence

the gauging py does not change the surface, and changes only the
potential &.

To see how the surface is changed by h., one must Iwasawa split h F into hy F =
FB, and then a equals F, so the change in the frame is not trivial to understand,
hence the change in the surface is also not trivial to understand.

However, it is easier to understand how the monodromy matrices of ¢ and ¢3
are related by hy, and this is often just the information we need, because we are
interested in getting the monodromy matrices into SU(2) so we can solve period
problems. Define M and M by

¢ Mo, ¢— M

as one travels about some loop in the z-domain. Then it is simple (i.e. Iwasawa
splitting is not required) to check that

M =hyMhi*.

3.5. Period problems in S® and H3. In the case of R®, we have a six real
dimensional period problem for each homology class of loops, as in [15]. If M
is defined so that ¢ — M - ¢ about a loop on the Riemann surface (with local
coordinate z), then the Sym-Bobenko formula implies that the immersion changes
as

fa[MfM‘%—Mwﬂwmf4hﬁ

as one travels about the loop. M is independent of z, but not of A\. Supposing that
we already know M € SU(2) for all A € S, then for the surface to be well defined
about the loop we need to know that

(3.4) M|z = #id and O\M|=1 =0,

that is, we need to get (M,0»M)|x=1 to be the identity element (up to sign) in
SU(2) x su(2). Since the dimension of the space SU(2) x su(2) is six, the period
problem is six dimensional.

For the cases of S and H?2, we check here that again the period problem is six
dimensional.

H? case, H > 1: About aloop we have F' — M - F, and assume that we already
know M is unitary on S (i.e. (M(M\)*)~! = M(1/])) for all A € C \ {0}). About
the loop, the immersion changes as

0 —i\+71(0 —i
A G R VN

So for the surface to be well defined about the loop, we need

a b .
(35) M|)\:eq/2 = (C d) = :i:ld,



BUBBLETON SURFACES IN SPACE FORMS VIA DPW 17

that is, we need the identity element (up to sign) in SL(2,C). (Note that even
though M is unitary on S', we can only consider the problem in SL(2,C), i.e.

(Z g) € SL(2,C),

because A = e?/2 does not lie on S'.) Since SL(2,C) is six dimensional, so is the
period problem.

S3 case: Again assume M, M>, defined by F; — M; - F; as we travel about the
loop, are unitary on S'. The pair (A1, A2) = (1, €*¥) implies

ei‘/’ 0 —1
pen (S 5

So when we travel about the loop, we have

f—= MfM;*t.
To close the surface about this loop, we need
(3.6) My =M, ==+id .

Note that M; are in SU(2), since |A;| = 1. So we need the identity element (up
to sign) in SU(2) x SU(2). As SU(2) x SU(2) is six dimensional, so is the period
problem.

4. SURFACES OF REVOLUTION
4.1. Cylinders via DPW. Define

_y-1(0 a)dz
e=x (0 0%,
for the complex variable z € C and A € S and a € R. One solution to d¢ = ¢¢ is
_ 0 a),_1\ _ [cosh(aX 'logz) sinh(aX 'logz)
¢ = exp (Ing (a 0) A ) - (sinh(a/\1 logz) cosh(ax~llogz)) ’
which has Iwasawa splitting

¢ =FB, where B =exp ()\ log z (2 g)) and

F =exp ((/\_1 logz — Alog %) (2 8)) .

When one travels once counterclockwise about the origin in the z-plane, F' changes
to M - F, where M is a matrix depending only on A\, and
. -1 . . -1
_ cpsh(2m'a()\71 +A)) smh(27rz.a()\71 +A)) € ASU(2) .
sinh(2mia(A~1 + X))  cosh(2mia(A~1 4+ X))

Since we will always have A € R or A € S, we have A + A\™! € R. Hence

_ [ cos(2ra(A"t + X)) isin(2ra(A + X))

~ \Usin(2ra(A"1 + 1)) cos(2ma(A" + X))
When M? = R®, we choose a = 1/4. When M?® = H®, we choose A = e%/? for
q € R" and a = 1/(4cosh(g/2)), so A > 1 and the resulting surface has mean
curvature H = cothq > 1. When M3 = S3, we choose \; = € and \y = e~

for v € (0,7/4] and a = 1/(4cos?), so the resulting surface has mean curvature
H = cot(2y).
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In each of these three space forms, the conditions (3.4), (3.5) and (3.6) are
satisfied, respectively. Hence in all three cases we have produced surfaces that are
homeomorphically cylinders.

Inserting F' into equations (2.13), (2.15), and (2.16), one can explicitly compute
the parametrizations for the surfaces and see that cylinders are produced. In the
case of S3, the cylinder wraps around onto itself to become of torus, since the
geodesic lines in S® are loops.

Remark. Viewing cylinders as members of a larger family of Delaunay surfaces, we
use a slightly more complicated potential £ in section 4.2 that will also produce
cylinders for certain values of its parameters.

4.2. Delaunay surfaces via DPW. Delaunay surfaces via DPW in R? are de-
scribed in detail in [17].

Define

dz
§:D; , where D = (s/\—}—t/\l .

r sAl+ t)\)
b
with r;s,t € R.
We remark that more generally one can allow s and ¢ to be complex numbers,

and assume st € R (and |s + {2 + r? = 1/4 in the R?® case), then gauging

e 0
F—F ( 0 e_w)
for some @ makes s, t real. The bulge and neck radii will be (1/(2H))(1++/1 — 16st).
One solution of d¢ = ¢€ is
¢p=exp(lnz-D) .
¢ can be split (this is not Iwasawa splitting) in the following way:
¢p=FB,, Fi=exp(ilD), By =exp(lnp-D),
where 2z = pei’. Note that F; € ASU(2).
Since D? = X?id, where X = /72 + (s + t)2 + st(A — A~1)? we see that
P cos(X) +irX 1sin(X) iX 1sin(0X)(sA~!+tA)
P7 X tsin(8X)(sA +tA1)  cos(8X) —irX 'sin(AX)) °
B, — (cosh(np-X) + rXlsinh(lnp- X) X~1sinh(Inp - X)(sA7! +¢))
1= X tsinh(lnp- X)(sA+ A1) cosh(lnp- X) —rX 'sinh(lnp - X)
Note that F; and B; are both even in A along the diagonal and odd in A on the
off-diagonal. We can now do Iwasawa splitting on Bi, i.e. By = F5 - B, where
F, € ASU(2) and B € AL SL(2,C). We define F = F; - F5. Thus ¢ = FB is the
Iwasawa splitting of ¢.

Because, for each fixed A, F» and B depend only on |z| = p and F; depends only
on 0, we have that, under the rotation of the domain

(4.1)

z = Ry, (2) = €%z,
the following transformations occur:
F—MyF, B-—B,

where
My, = e'%P
o }
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Note that Mp, in (4.1) depends on A, and My, € ASU(2). In fact, My, is explicitly
of the form Fj in (4.1) evaluated at 6 = 6,.
Now we consider the period closing conditions in each of the three space forms:

e When M3 = R? we want My, to satisfy (3.4), so that the surface will close
under a loop about the origin in the z-plane and become homeomorphically
a cylinder. And (3.4) is satisfied if

2+ (s+t)?=1/4,

so we impose this condition when M3 = R3.

e When M? = H3  we want M,, to satisfy (3.5), so that the surface will
close under a loop about the origin in the z-plane. With ¢ € R*, (3.5) is
satisfied if

r?+ (s+t)°+ 4stsinh2(g) =1/4,
so we impose this when M3 = H3.

e When M3 = $3 we want M,, to satisfy (3.6), to make the surface close.
With A\; = e and Ay = =%, (3.6) is satisfied if

r? + (s +1)? — 4stsin®(y) = 1/4,

so we impose this when M3 = S°.

In the case of R®, under the mapping z — Rg,(z), we have that f as in (2.13)
changes as

(4.2) f = M, f Myt — i(OxMy,)|x=1 M " .
One can check that Equation (4.2) represents a rotation of angle 6y about the line
{z-(-s—1,0,r)+2(s—t)-(2r,0,25+ 2t) |z € R} .

Therefore f is a surface of revolution, and hence a Delaunay surface. Which De-
launay surface one gets depends on the choice of r,s,t. An unduloid is produced
when st > 0. If we allow s or ¢ to be nonpositive, then a nodoid is produced when
st < 0, and for the limiting singular case of a chain of spheres, st = 0. A cylinder
is produced when s = ¢.

In the case of H?, under the mapping z — Rjp,(z), we have that f as in (2.16)
changes as

(4.3) f = Mg, for, My oy .

One can check that Equation (4.3) represents a rotation of angle 6y about the
geodesic line

{(x0,21,0,23) € R>' | (e — 1)(s — t)mo — re?/ %y + (e + 1)(s + t)z3 = 0} N H® .
Therefore f is a surface of revolution, and hence a Delaunay surface in H3.

Remark. We still need to find the axis in the S® case. We also need to give the
weights of these Delaunay surfaces in all three space forms. Knowing the weights
will be important for describing trinoids.
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5. BUBBLETONS

5.1. Bubbletons via DPW. Let R be the Riemann surface S\ {p;, p2} with the
standard holomorphic structure. Using stereographic projection, we can denote
R = C U {oo}\{p1,p2}- And using a Moebius transformation, we can transform R
to C* = C\{0}. Stereographic projection and Moebius transformations preserve
the holomorphic structure of the Riemann surface. So we need only consider R =
C* = C\{0}.

Let ¢(z,A) be a solution of d¢ = @& with some initial condition ¢(z., ) at
2z = 2. and let ¢ = F - B be the r-Iwasawa splitting of ¢, where £ = A(z, \)dz
and A(z,)\) € A.sl(2,C) for some r € (0,1]. Let f be as in the Sym-Bobenko
formula (2.13) or (2.15) or (2.16), respectively, made from the extended frame F.
We assume that the monodromy My of ¢ (associated to a counterclockwise loop
around z = 0) is in A,SU(2) and My satisfies one of the closing conditions (3.4) or
(3.5) or (3.6), respectively. Thus f is well-defined on R.

Remark. The first assumption that My is in A,.SU(2) is not actually a restric-
tion, because if trMy is in (—1,1) or My equals to +id, then we can change the
initial condition ¢(zx,A) to C'(A) - #(2«, A) for some C(X) so that My changes to
C(A)MyC~1(N) and C(A\)MsC1(N) is in A, SU(2).

Consider the dressing ¢ — ¢ := h - ¢, where h is the matrix

1—a2)2
AZ— 2
h= @ | @€ C*.
—Q
0 1—a2)2

Let ¢ = F'- B be the r-Iwasawa splitting of # and let f be the Sym-Bobenko formula
(2.13) or (2.15) or (2.16), respectively, made from the extended frame F. Note that
if [a| <7 or r~! < |, then h € A,.SU(2). So the surface f differs from f by only
a rigid motion. Therefore we assume r < |a| < 1.

Lemma 5.1. If hMsh~" in A,.SU(2), then F changes to (hMyh~1') - F when
one travels a counterclockwise loop around z = 0. Hence the monodromy of F is
hM¢h_1.

Proof. When one travels a counterclockwise loop around z = 0, q; changes as follows
¢ — hMyh~1¢

The condition hMgzh~' € A,SU(2) implies that r-Twasawa splitting of hMyzh~'d

is (hMyh™'F)B, i.e hMyh™'F € ASU(2) and B € A1 SL(2,C). Thus F changes

hMyh~'F when one travels a counterclockwise loop around z = 0. O

Noting the previous lemma, we define the bubbleton surfaces.

Definition 2. Let f,f: R — R® or H? or $%, be CMC immersions derived from
the above solutions ¢ and ¢. Then f is a bubbleton surface of f if hMyh™! €
ASU(2).

Lemma 5.2. The bubbleton f satisfies the closing condition: that is, it is well-
defined on R.
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Proof. In the R? case, we show that since Mg|rx=1 = +id and OyxMy|r—1 = 0 are
satisfied, thus (hMyh™')[x=1 = %id and dx\(hMgh™')|x=1 = 0 are also satisfied.
This follows from the following computations:
(hMph™")Ia=1 = hlx=1 Mg|x=1h™ r=1 = *id
6)\(hM¢,h71)|>\:1 =
((Oxh)Mgh™") a1 + (R(OAMg)h™ ") =1 + (AMy(—h~ (Orxh)h™ 1)) |x=1 = 0

The H? and S? cases are similar, in fact they are even simpler, because no deriva-
tives with respect to A are involved. O

Lemma 5.3. hMsh™" is in A.SU(2) if and only if My is an upper triangular
matriz at A = o and o lower triangular matriz at A = £a~!

Proof. Let m;; be the entries of My. We have

miy L T
hMph™t = | a2 Ao :
1—a2 2 m21 ma2
Thus hMyh~! isin A, SU(2) iff 20‘02\2 m12(A) and 1)‘_2;2“/\22 ma1(A) are holomophic
onr < || < r~!. This happens iff 222 and 22t are bounded onr < |A| < r—L.
A—a 1—az\
And this happens iff My is an upper triangular matrix at A = £« and a lower
triangular matrix at A = +a~!. O

Theorem 5.4. There exist cylinder bubbleton and Delaunay bubbleton surfaces for
all three space forms.

Proof. First we consider the case that f is a cylinder, with ¢, ¢, My as in Section
4.1. So the monodromy matrix is:
_ (cosh(2ma(A + A7) sinh(2ma(A + A7 1))
¢ (sinh(27m()\ + A7) cosh(2wa(X + )\_1))> ’

where

R? case: a=1/4

H? case: a = 1/(4cosh(q/2))

S case: a =1/(4cos(7))
Clearly My is in A, SU(2) for all r € (0,1] and satisfies the closing conditions. We
take a = — V62 —1 with § = £ (k > 2 and k € N), and we can immediately
compute My|x=14,+q-1 = —id. We can choose r so that « satisfies r < |a| < 1.
Thus Lemma 5.3, Lemma 5.2 and Definition 2 imply existence of the bubbleton
surface of the cylinder.

Now we consider the case that f is a delaunay surface, with ¢, £, My as in Section
4.2. In this case the monodromy matrix is:
Mo — (COS(ZTI’X) +irXlsin(27X) X !sin(2rX)(sA7! + 1) )
7 iX Tsin(2nX)(sA+tA ') cos(2nX) —irX ' sin(2rX)

where

1
X=r2+(s+t)2+stA=A1)2, 2+ (s+t)>+a= 1
, and
R3case:a =0
H? case: a = 4st cosh®(q/2)
S8 case: a = —4stsin®(y)
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Again clearly My is in A,SU(2) for all » € (0, 1] and satisfies the closing conditions.
We take a = 7“”3_‘/3 with § = é(k'l—_l +a) (k>2andk € N), and we can
immediately compute My|y=1q,+a-1 = —id. We can choose r so that a satisfies
r < |a| < 1. Thus again Lemma 5.3, Lemma 5.2 and Definition 2 imply existence
of the bubbleton surface of the delaunay surface. O

Remark. We consider the dressing matrixes hq, ..., hp:

1—a;2)2 0
2 _ 2 . . .
h; = )‘0 e |’ where a; € C* and h; #h; if i #j .
1—a;2)2

We put H := hy - - - h,, and we consider the dressing ¢ — & := H - ¢. We can do
the same arguments in this section using H instead of the previous h, and then we
see that there exist multibubbletons with cylindrical and Delaunay ends.

5.2. Computing the change of frame for the simple type dressing. Now we
do the story of the Backlund transformation in the sense of Terng and Uhlenbeck
(see [25]). This will lead to explicit parametrization of the cylinder bubbletons in
all three space forms.

Let ¢ be a solution of d¢ = ¢¢ with the some initial condition ¢(z.,A) and
let ¢ = F' - B be the r-Iwasaswa splitting. In this section, the situation and the
assumptions are the same as in Section 5. We consider C? with inner product (,)
and ey, e; forming the orthonormal basis

(). =)

of C?. We define two subspace Vi, Vs spaned by vy, vs.:

i X 'B
Vi={a-v|v = <A1d13>,a60}5 Vo= {a-v2|v2:< Oj4 ),GEC}

where 1B
Flaza = (C’ D)

We define projections 71, 7o, 71, 72 and linear combinations h, k of these projec-
tions.

m = orthogonal projection to e; i1 := projection to V; parallel to V5
mo = orthogonal projection to es s := projection to V5 parallel to V;
ho =2 4 P ho = 7128+ f 2,
where 22 )
-«
F=1—me
1—a?X

Note that in general 77; and 72 are non-orthogonal projections.
The following lemma is obvious:

Lemma 5.5.
mom =m ,momy =0,m90m =0,m20m =73 .

Lemma 5.6.
= V20 4 V2, R = [ 4 125,
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Proof.
hoh—l — (f_1/27r1 + f1/27r2) ° (f1/2ﬂ_1 + f_1/27r2)
=mom+f 'mom+ fraom +mpomy =m +m =id,

by Lemma 5.5. Similarly h=! - h = id.

BOB—I — (f—l/Qﬁ,l + f1/2ﬁ,2) ° (f1/27:['_1 + f—l/?ﬁ,z)
:7~1'1 o7~r1—}—f717~r107~r2+f7~r207~r1 +7~r207~r2=7~r1 +7~T2 =ld,
by Lemma 5.5. Similarly A~ - h = id. O

Lemma 5.7. In terms of the basis e1,e2, we can write w;,7; (j = 1,2) in the

following matriz forms:
(10 _ (0 0
=0 o)/ "™~ \0 1)

= 1 |[A? Xa'4B
T AR + [a-2[B]2 \\ '@ 'AB  |a|2(B?)
. 1 la|2|B|*>  —Aa"'AB
T TTAR + o[ ?|BR \-A '@ TAB AP

Proof. Consider 71,72, 71,72 as the above matrices. Then

for all = = ($1> €C?,
)

0
m-T = ($01) and 7wy -z = (1172)

These imply that 7; is orthognoal projection to e; for j =1, 2. Similarly, we have
Az + da" 1Bz, A - o X 'a'Bzx, + Azs [(—Xa"'B
AP + ol 2[BE \\'a'B) T T AR ol 2B A
Thus 71 -v1 = vy ,Vv; € Vi and 71-Vo = 0, and 7y-v2 = v2 ,Vus € Vo and 2-V; = 0.

These imply that 7, is projection to V; parallel to V5 and 7, is projection to V5
parallel to V. O

7?1'.’13 =

We now define a matrix C € A, SU(2):

o= —ietf 1 TXA
VTR +1 T\t -1)
a 1AB(1 + a?)
A — & [BP

d2

where T = and 0 = arg(|A]* — |BI?)

|af?
Theorem 5.8. Let ¢ be a solution of dp = ¢ on R and let ¢ = FB be the r-
TIwasawa splitting of ¢. We assume that the monodromy My of ¢ is in A, SU(2) and
is +id at A = +a, +a~'. We do the dressing ¢ — h-¢, then h¢ = (hFh~'C~")(ChB)
is r-Twasawa splitting of h- ¢, i.e. hFh='C~' € A, SU(2) and ChB € A, SL(2,C),
where h, h,C are defined as above.
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Proof. We first show hFh~' € A,SU (2). F, C have the reality condition, i.
AY) = (A(M\)~Y)*. We show that h, h also have the reality condition.

WY = )+ f )
(AN = (f(A)l/%r + F(N) T Pm)*
=T + T o
f(A N4 f )
RO = FOY RO + ) PR

(RN )" f(A)”Z" )+ FN) R (N)”
FCVRAETTC R (P VIR VR
1/2. v_1 1/2.
= ARG + (Al)/ 2(A71)
Thus we have shown the reality condition for h, h. F, C are holomorphic on
r < |\ < r~'. h, h are holomorphic on 7 < |[A| < r~! with singularities only
at A = +a,+a"!. Thus we need only check that hFh~! has no singularities at
A= to,£a" L
WFh sesaea-t = ((fPm+ 1 Pm)F (P00 + 7P %2)) [\ g
= (71'1F7~1'1 + f7r2F7~r1 + f7171'1F7~1'2 + 7T2F7~r2)|/\::ta,:|:a—1
=C1+0+0+Cy (3C1,3C, € SL(2,0))
# 00
Finally we show ChB € A,,SL(2,C). B is in A;,SL(2,C), so we need only

check that Ch is in A, SL(2,C). We can clearly see Ch € A,SL(2,C) and is
holomorphic on 0 < |A| < r and continuous on 0 < |A| < 7. A direct computation

shows that
7 p1po 0
ChB|y—o = ),
|)\ 0 ( 0 P1 lpo 1>
|| 1A + ||| B[? po O
h = —_n =
where p; lal[AP + [a|= | B € Ryy and Blx—o 0 pt

Theorem 5.8 has the following corollary:

Corollary 5.9. We have explicit parametrizations for cylinder bubbletons in all
three space forms using the Sym-Bobenko formulas (2.13), (2.15) and (2.16).

Remark. Cylinder multibubbletons also have explicit parametrizations.

Remark. Proposition 3.2 implies that the conformal factor of the metric of the
bubbleton surface is

(5.1) 2e%% = 2p% |

where B € ASL, (2,C) and B|)= = (8 p(_)1>'
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5.3. Equivalence of the simple type dressing and Bianchi’s Backlund
transformation on the cylinder. In this section we prove the equivalence of
the simple type dressing and Bianchi’s Bécklund transformation in R® in the case
of the cylinder. Bianchi’s Bécklund transformation is described in [24]. Actually, in
the cylinder case, we can show that the metric, the Hopf differential and mean cur-
vature of Bianchi’s Bicklund trasformation are the same as those resulting from the
simple type dressing. In a general setting, Fran Burstall [5] has proven that equiv-
alence of the simple type dressing and Darboux transformation of CMC surfaces.
This implies the equivalence of the simple type dressing and Bianchi’s Backlund
transformation, because Udo Hertrich-Jeromin and Franz Pedit [7] have proven
that the equivalence of Darboux transformation of CMC surfaces and Bianchi’s
Bécklund transformation of CMC surfaces. Thus what we are proving here is only
a special case of something that has been recently proven by Fran Burstall. But we
include a proof here, because our proof is more direct and tailored to the case for
which we need it.

First we introduce the metric, the Hopf differential and the mean curvature of
Bianchi’s Bécklund transformation using [24]. Using the notation in [24], we can
write the first and second fundamental forms and the principal curvatures of a CMC
surface as follows:

ds* = e**(dz® + dy?)
II = e*(sinh(w)dz? + cosh(w)dy?)
k1 =e ¥sinh(w), k2 =e ¥ cosh(w)
We can compute H and Q:
H=1/2, Q=-1/2
The Gauss equation becomes as follows:
2w,z + sinh(2w) =0

In particular, in the cylinder case we have w = 0. We do the Bécklund transfor-
mation on the cylinder, and we get the following function w; of the new metric
€21 (dz? + dy?):

cos(b) )
cosh(a)/ ’

where a = zsinh(B1),b = ycosh(8;) and 8 € C. Using tanh(z) = 1/2log(112),
we can rewrite w; as follows:

2wy (cosh(ﬂl) cosh(a) + sinh(f1) cos(b) )2
~ \cosh(f) cosh(a) — sinh(; ) cos(b)
Under Bianchi’s Bicklund transformation, the Hopf differential and mean cuvature
do not change.
Next we compute the metric after the dressing h. Using the proof of Theorem
5.8 and equation (5.1), we have the following metric:

o LA2 + |a||B|2)2_ )
al[AP + o B2/ 70

w; = 2tanh™! (tanh(ﬂl)

2e% = 2% = 2% - g = 2(

In particular, for the cylinder case, pg = 1, A = cosh(@), B= sinh(@)

and a € R. Note that in this case, we make the change of the coordinate z to e*
for the cylinder example in Section 4.1.
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Theorem 5.10. Bianchi’s Backlund transformation of the cylinder and the simple
type dressing of the cylinder are the same surface.

Proof. Bianchi’s Backlund transformation of the cylinder has the following metric,
mean curvature and the Hopf differential:
Q2un _ (cosh(ﬂl) cosh(a) + sinh () cos(b))2
cosh(B1) cosh(a) — sinh(f;) cos(b)/ ’
H=1/2,
Q = _1/2 )
where a = zsinh(831),b = y cosh(f;) and $; € C.

The simple type dressing by h has the following metric, mean curvature and the
Hopf differential:

(a*1| cosh(X)|? + o sinh(X)|2)2
a) cosh(X)|? + a~1|sinh(X)]2/
H=1/2 ,
Q=-1,

2¢2U1 =

-1 —
where X = & —2-22

2

We consider the change of the coordinate w = /2 - z. This changes the Hopf
differential @ to (1/2)Q and changes the metric 2e?* to e>“. Note that the mean
curvature doesn’t change. Using the additional theorem for hyperbolic sine and

cosine functions, we can rewrite the metric:
2 ((of1 + a) cosh(X + )E') —(a™' — a)cosh(X — )E'))Z’
(= + a)cosh(X + X) — (a~! —a) cosh(X — X)

We have X + X = 2ReX = 2(2—=%) and X — X = 2iImX = iy(—*2). Thus
the metric has the following form:

-1 —1_ —1_ L a1
U — (a 2+a cosh (= 2 *) - %—aCOSth(()[ZJ))Q

ate= cosh z(25=2) — @5=2 coshiy(25T2)

We put a_12+a = cosh(f;) and 0‘_;’0‘ = sinh(3;). Thus we can rewrite the metric

as follows:
Q2 _ (cosh B1 cosh(z sinh 81) — sinh 3 cos(y cosh 1) )2
cosh 31 cosh(z sinh ;) — sinh 3 cos(y cosh 1)
Thus both transformations give the same metric, mean curvature and the Hopf

differential. So the fundamental theorem of surface theory implies that the two
transformations of the cylinder are the same. |

5.4. Parallel surfaces of the bubbletons. CMC surfaces have parallel CMC
surfaces. In this section, we prove that the parallel surfaces of the bubbletons are
the same surface as the original bubbletons. First we derive a result on parallel
CMC surfaces that can be found in [2]:

Theorem 5.11. Let f be a confromal CMC surface defined by the Sym-Bobenko
formula (2.13) on a simply-connected domain D C R*. Then

= [%F (6 fz) F=1 —i)\O\F) -F‘l]

A=1
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is a conformal parametrization of another CMC surface defined for (x,y) € D. We
denote the metric, the mean curvature and the Hopf differential of f* by 2e>*" (dx®+
dy?), H* and Q*, respectively. Then the conformal factor of 2¢**" (da? + dy?), H*
and Q* have the following forms:

262u* — 2ef2u|Q|2 ,
H*=H ,
Q" =0Q

Here 2e?%(dz? + dy?), H and Q are the metric, the mean curvature and the Hopf
differential of the CMC surface f, respectively. We call f* the parallel surface of

f.
Proof.

« . 0 0\ ~_ . . 0 AQ\ .
62 (.=ieF(\ 0y 0)F . Une=ier () )
This implies that (f7, f#) = 2e 2%|Q|®. We can also compute H* and Q*.
1
- 2e2u*
Q" =(f,N")=Q
Here N and N* = —N are the normal vectors of the CMC surface and the parallel
CMC surface, respectively. |

H* (7 N*)=H ,

Theorem 5.12. The parallel surface of a cylinder bubbleton is the same surface
as the original cylinder bubbleton, up to a rigid motion.

Proof. Using equation (5.1), we can describe the conformal factor of the metric,
the mean curvature and the Hopf differential of the cylinder bubbletons as follows:
a AP + o| B? )2
alAP +a !B/
H=1/2 ,
Q =-1 )
where A = cosh(2—2=92) B — sinh(2—2=9%) and a € R.
Using Theorem 5.11, we can also describe the conformal factor of the metric,

the mean curvature and the Hopf differential of the bubbleton parallel surface as
follows:

2e?u1 = 2(

alAl? + a7 B\ 2
a1 A]2 + a|B|2) ’
H*=1/2 ,

Q=-1

We consider the conformal change of the coodinate y — y — 7/2 on the parallel
surface, where z := ¢ + 4y. Under this change, the mean curvature and the Hopf
differential do not change. For the metric, |A|> and |B|? change to |B|* and |A|?,
respectively. Thus the conformal factor of the metric changes as follows:

2e7° = 2¢ 2 = 3(

alA]” + a‘1|B|2)2 2<0FIIAI2 + aIBl2)2 — 9pu

2e%” = 2(
‘ a~|A]? + a|B[? al4? +a~1|B[?
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Thus both surfaces have the same metric, mean curvature and Hopf differential
to this change of coordinate. Thus the fundamental theorem of surface theory

implies the two surfaces are the same. |
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