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Abstract

It is a classical result that surfaces made from a constant mean
curvature (CMC) H surface by moving in the normal direction the
distances 1/2H and 1/H, respectively, are of constant Gaussian cur-
vature K = 4H2 and of constant mean curvature −H, respectively.
We call them parallel surfaces. In this paper, we study CMC surfaces
whose parallel CMC surfaces are congruent to the original surface. In
particular, we show that Delaunay surfaces (unduloids and nodoids),
the simplest Wente tori, and the simplest bubbletons are all surfaces
of this type.
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1 Basic surface theory

All parametrizations P : U ⊂ R2 → S ⊂ R3 are assumed to be compatible
with the oriented normal vector n of the surface S; that is, in P (U),

n =
Pu × Pv

|Pu × Pv| .

Let P (u, v) be a parametrization at a point P ∈ S of a surface S, and let
γ(s) = P (u(s), v(s)) be a parametrized curve on S, which γ(0) = P . To
simplify the notation, we shall make the convention that all functions to
appear below denote their values at the point P . The tangent vector to γ(s)
at p is γ′ = Puu′ + Pvv

′ and

dn(γ′) = n′(u(s), v(s)) =
d

ds
n(u(s), v(s)) = nuu′ + nvv

′.

Since nu and nv belong to Tp(S), we may write

nu = APu + BPv,

nv = CPu + DPv,
(1.1)

and therefore,

dn(γ′) = (Au′ + Bv′)Pu + (Cu′ + Dv′)Pv;

thus, in matrix form with respect to the basis {Pu, Pv} of TP (S),

dn

(
u′

v′

)
=

(
A B
C D

)(
u′

v′

)

This shows that in the basis {Pu, Pv}, dn is given by
(

A B
C D

)
. Notice that

in general this matrix is not necessarily symmetric.
The expression of the second fundamental form in the basis {Pu, Pv} is

given by

IIp(γ′) = −〈dn(γ′), γ′〉 = −〈nuu′ + nvv
′, Puu′ + Pvv

′〉
= L(u′)2 + 2Mu′v′ + N(v′)2,

where, since 〈n, Pu〉 = 〈n, Pv〉 = 0,

L = −〈nu, Pu〉 = 〈n, Puu〉,
M = −〈nv, Pu〉 = 〈n, Puv〉 = −〈nu, Pv〉,
N = −〈nv, Pv〉 = 〈n, Pvv〉.

(1.2)
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We shall now compute the values of A, B, C, D in terms of the coefficients
L, M, N . From (1.2), we have

−M = 〈nu, Pv〉 = AF + CG,

−M = 〈nv, Pu〉 = BE + DF,

−L = 〈nu, Pu〉 = AE + CF,

−N = 〈nv, Pv〉 = BF + DG,

(1.3)

where
E = 〈Pu, Pu〉, F = 〈Pu, Pv〉, G = 〈Pv, Pv〉,

are the coefficients of the first fundamental form in the basis {Pu, Pv}.
Relation (1.3) may be expressed in matrix form by

−
(

L M
M N

)
=

(
A B
C D

)(
E F
F G

)
; (1.4)

thus, (
A B
B C

)
= −

(
L M
M N

)(
E F
F G

)−1

. (1.5)

From (1.5), we get

A =
FM −GL

EG− F 2
, B =

FL− EM

EG− F 2
,

C =
FN −GM

EG− F 2
, D =

FM −EN

EG− F 2
.

(1.6)

The relations (1.1), with the above values, are known as the equation of
Weingarten. Let −k1, −k2 be the eigenvalues of dn, hence k1 and k2 satisfy
the equation

dn(vj) = −kjv = −kjIvj for some vj ∈ TP (s), vj 6= 0, j = 1, 2,

where I is the identity map. From (1.4), we immediately get

K = k1k2 = det
(

A B
C D

)
=

LN −M2

EG− F 2
. (1.7)

We compute the mean curvature as follows: The linear map dn + kjI is not
invertible, hence it has zero determinant. Thus

det
(

A + kj B
C D + kj

)
= 0

⇐⇒ kj
2 + (A + D)kj + AD −BC = 0

⇐⇒ (EG− F 2)kj
2 − (EN + GL− 2FM)kj + LN −M2 = 0.

(1.8)
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Since k1 and k2 are the roots of the above quadratic, we conclude that

H =
1
2
(k1 + k2) = −1

2
(A + D) =

EN + GL− 2FM

2(EG− F 2)
. (1.9)

From (1.8), we get

det
(

L− kjE M − kjF
M − kjF N − kjG

)
= 0.

This is the equation to find kj such that there exists the solution wj =
(ξj , ηj)t 6= (0, 0)t of the following equation:

(L− kjE)ξj + (M − kjF )ηj = 0,

(M − kjF )ξj + (N − kjG)ηj = 0.
(1.11)

Here, kj are the principal curvatures and wj = (ξj , ηj)t ∈ TP (S) are the
principal directions.

2 Parallel surfaces

2.1 Three parallel surfaces

In this subsection, we show that there exist surfaces of constant Gaussian
and constant mean curvature, respectively, parallel to a constant mean cur-
vature nonminimal surface in the normal direction.

Definition 1. If a regular connected curve C in S is such that for all P ∈ C
the tangent line of C is a principal direction of S at P , then C is said to be
a curvature line of S.

Definition 2. Let S be an orientable surface and let n be a unit normal
vector of S. We consider a surface S̄ to be parallel to S if there is a nor-
mal geodesic congruence between S and S̄ such that the distance between
corresponding points is constant, i.e. for each P ∈ S we have

P̄ (u, v) = P (u, v) + a · n(u, v), (2.1)

where a 6= 0 is a real constant. We say that S and S̄ are parallel surfaces at
distance a.

Lemma 2.1. Let S be an orientable surface and let S̄ be parallel to S at
distance a. Then the unit normal vector n̄ of S̄ is equal to the unit normal
vector n of S.
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Proof. From (2.1), we get

P̄u = Pu + a · nu = (1 + aA)Pu + BPv, (2.2)
P̄v = Pv + a · nv = CPu + (1 + aD)Pv. (2.3)

From (2.2) and (2.3), we get 〈P̄u, n〉 = 0, 〈P̄v, n〉 = 0.

Lemma 2.2. Two principal directions of P (u, v) are orthogonal, away from
umbilic points (where k1 = k2).

Proof. Let ki be the principal curvatures and let wj = (ξj , ηj)t be the
corresponding principal directions. From (1.11), we have

Lξj + Mηj = kj(Eξj + Fηj),

Mξj + Nηj = kj(Fξj + Gηj),
(j = 1, 2). (2.4)

The equation (2.4) may be expressed in matrix form by
(

L M
M N

) (
ξj

ηj

)
= kj

(
E F
F G

)(
ξj

ηj

)
, (j = 1, 2). (2.5)

Using (2.5), we get

k2 · (ξ1, η1)
(

E F
F G

)(
ξ2

η2

)
= (ξ1, η1)

(
L M
M N

)(
ξ2

η2

)

= (ξ2, η2)
(

L M
M N

)(
ξ1

η1

)

= k1 · (ξ2, η2)
(

E F
F G

)(
ξ1

η1

)

= k1 · (ξ1, η1)
(

E F
F G

)(
ξ2

η2

)

From the assumption k1 6= k2, we get

(ξ1, η1)
(

E F
F G

)(
ξ2

η2

)
= 0 ⇐⇒ 〈w1, w2〉 = 0.

Lemma 2.3. Let P (u, v) be a surface with no umbilic points. Then the
parametric curves P (u, v0) and P (u0, v) are curvature lines for each fixed
u0, v0 if and only if

F = M = 0. (2.7)
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Proof. To prove one direction, assume Pu and Pv are principal curvature di-
rections. Then, from Lemma 2.2, we immediately have F = 0. Substituting
F = 0 into (1.11), we get

(L− kjE)ξj + Mηj = 0,

Mξj + (N − kjG)ηj = 0.

Since the principal directions of the curvature lines are the directions of Pu

and Pv (so η1 = 0 and ξ2 = 0), we have from the above equations that the
principal curvatures satisfy

k1 =
L

E
, k2 =

N

G
(2.8)

and M = 0.
Conversely, if F = M = 0, then k1 and k2 are as is (2.8) and η1 = 0 and

ξ2 = 0, hence Pu and Pv are principal directions.

Remark . Let P (u, v0) be a principal curve, then substituting (2.7) into
(1.1) and (1.6), we get the following equations:

nu = −k1Pu, nv = −k2Pv, (2.9)

where k1 and k2 are the principal curvatures.

Lemma 2.4. If P (u, v0) is a principal curve of S, then P̄ (u, v0) is a prin-
cipal curve of S̄.

Proof. Since P (u, v0) is a principal curve of S,

P̄u = Pu + a · nu = (1− ak1)Pu. (2.10)

Hence
Pu =

1
1− ak1

P̄u. (2.11)

From Lemma 2.1 and (2.9), (2.11), we get

n̄u = nu = −k1Pu = − k1

1− ak1
P̄u.

With
k̄1 =

k1

1− ak1
, (2.12)

we have n̄u = −k̄1P̄u. This means that P̄ (u, v0) is also a principal curve.
Here, k̄1 is the principal curvature of S̄ along P̄ (u, v0).

Let τ(u) be the torsion of P (u, v0). Then we have

τ(u) =
det(Pu, Puu, Puuu)

|Pu × Puu|2 . (2.13)

Using (2.13), we can show this lemma:
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Lemma 2.5. Let P (u, v0) be a curve with nonzero curvature in S. Then
P (u, v0) is planar if and only if the torsion of P (u, v0) is equal to zero, i.e.
if and only if we have

det(Pu, Puu, Puuu) = 0. (2.14)

Lemma 2.6. If P (u, v0) is a planar principal curve in S, then P̄ (u, v0) is
a planar principal curve in S̄.

Proof. Using (2.10) and (2.11), we get

P̄uu = −a(k1)uPu + (1− ak1)Puu,

P̄uuu = −a(k1)uPuu − a(k1)uuPu + (1− ak1)Puuu − a(k1)uPuu

= −a(k1)uuPu − 2a(k1)uPuu + (1− ak1)Puuu.

Using (2.14), we get

det(P̄u, P̄uu, P̄uuu) = (1− ak1)3 · det(Pu, Puu, Puuu) = 0.

Proposition 2.7. Let S be a regular orientable surface and let a be a real
constant such that 1 − 2aH + a2K 6= 0. Then the curvatures H̄ and K̄ of
the surface S̄ parallel to S at a distance a are given by

K̄ =
K

1− 2aH + a2K
, (2.15)

H̄ =
H − aK

1− 2aH + a2K
. (2.16)

Proof. From (2.12) in Lemma 2.4, we find the principal curvatures of S̄:

k̄1 =
k1

1− ak1
, k̄2 =

k2

1− ak2
. (2.17)

Using (1.7), (1.9) and (2.17), we calculate the Gaussian curvature and mean
curvature:

K̄ = k̄1k̄2 =
k1

1− ak1
· k2

1− ak2
=

k1k2

1− 2a · k1+k2
2 + a2k1k2

=
K

1− 2aH + a2K
,

H̄ =
1
2
(k̄1 + k̄2) =

1
2

(
k1

1− ak1
+

k2

1− ak2

)
=

k1+k2
2 − ak1k2

1− 2a · k1+k2
2 + a2k1k2

=
H − aK

1− 2aH + a2K
.
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Corollary 2.8. Let S be a regular orientable surface with no umbilic points
and such that its Gaussian curvature does not vanish.

If S has constant mean curvature H > 0, then there exist two surfaces
parallel to S such that one has constant positive Gaussian curvature K =
4H2 and the other one has constant mean curvature equal to −H.

If S has positive constant Gaussian curvature K, then there exist two

surfaces parallel to S at the distance a = ∓ 1√
K

whose mean curvatures are

constant and equal to H = ±
√

K

2
.

Proof. Suppose S has constant mean curvature H > 0. Substituting a =
1

2H
into (2.15) and (2.16), we get

K̄ =
K

1− 2 · 1
2H ·H + 1

4H2 ·K
= 4H2,

H̄ =
H − 1

2H ·K
1− 2 · 1

2H ·H + 1
4H2 ·K

=
4H3 − 2H2K

K
.

By assumption, we have K 6= 0. So the parallel surface at distance
1

2H
has

constant Gaussian curvature 4H2.
Substituting a =

1
H

into (2.15) and (2.16), we get

H̄ =
H − 1

H ·K
1− 2 · 1

H ·H + 1
H2 ·K

= −H,

K̄ =
K

1− 2 · 1
H ·H + 1

H2 ·K
=

H2K

H2 −K
.

We have

H2 −K = 0 ⇐⇒ (k1 + k2)2

4
− k1k2 =

(k1 − k2)2

4
= 0 ⇐⇒ k1 = k2.

By assumption, S has no umbilic points, so H2 − K 6= 0. So the parallel

surface at distance
1
H

has constant mean curvature −H. The rest of the
corollary can be proven with similar arguments.

Definition 3. In Corollary 2.8, If S has constant mean curvature H > 0,
then the constant positive Gaussian curvature surface parallel to S at the

distance a =
1

2H
is called the parallel K-surface of S, and the constant

mean curvature surface parallel to S at the distance
1
H

is called the parallel
H-surface of S.
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Remark . Thus from P (u, v), we have three parallel surfaces

P (u, v), PK(u, v), PH(u, v),

where

PK(u, v) = P (u, v) +
1

2H
n, PH(u, v) = P (u, v) +

1
H

n,

where n is the unit normal vector of P (u, v). The surface PK(u, v) represents
the parallel K-surface of P (u, v) and the surface PH(u, v) represents the
parallel H-surface of P (u, v).

2.2 Isothermal coordinate systems

When the coordinate system (u, v) is isothermal, the coefficients of the first
and second fundamental forms are

E = G = λ, F = 0,

and

L = 〈Puu, n〉 = −〈Pu, nu〉,
N = 〈Pvv, n〉 = −〈Pv, nv〉,
M = 〈Puv, n〉 = −〈Pu, nv〉 = −〈Pv, nu〉.

Let us now assume that (u, v) are isothermal coordinates for P (u, v). Now,
we calculate the coefficients of the fundamental forms of the parallel surface
P̄ (u, v) = P (u, v) + a · n of the surface P (u, v). Using

nu =
FM −GL

EG− F 2
Pu +

FL−EM

EG− F 2
Pv = −L

λ
Pu − M

λ
Pv,

nv =
FN −GM

EG− F 2
Pu +

FM −EN

EG− F 2
Pv = −M

λ
Pu − N

λ
Pv,
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we get

Ē = 〈P̄u, P̄u〉 = 〈Pu, Pu〉+ 2a〈Pu, nu〉+ a2〈nu, nu〉
= λ− 2aL +

a2(L2 + M2)
λ

,

F̄ = 〈P̄u, P̄v〉 = 〈Pu, Pv〉+ 2a〈Pu, nv〉+ a2〈nu, nv〉
= −2aM +

a2M(L + N)
λ

,

Ḡ = 〈P̄v, P̄v〉 = 〈Pv, Pv〉+ 2a〈Pv, nv〉+ a2〈nv, nv〉

= λ− 2aN +
a2(M2 + N2)

λ
,

L̄ = −〈nu, P̄u〉 = −〈nu, Pu〉 − a〈nu, nu〉
= L− a(L2 + M2)

λ
,

M̄ = −〈nv, P̄u〉 = −〈nv, Pu〉 − a〈nv, nu〉
= M − aM(L + N)

λ
,

N̄ = −〈nv, P̄v〉 = −〈nv, Pv〉 − a〈nv, nv〉
= N − a(M2 + N2)

λ
.

From Corollary 2.8, we can calculate the coefficients of the fundamental

forms of the parallel surfaces when a =
1

2H
,

1
H

(
H =

L + N

2λ

)
.

(i) When a =
1

2H
=

λ

L + N
,

ĒK = λ− 2λL

L + N
+

λ2

(L + N)2
· L2 + M2

λ
=

λ(M2 + N2)
(L + N)2

,

F̄K = − 2λM

L + N
+

λ2

(L + N)2
· M(L + N)

λ
= − λM

L + N
,

ḠK = λ− 2λN

L + N
+

λ2

(L + N)2
· M2 + N2

λ
=

λ(L2 + M2)
(L + N)2

,

This shows that the coordinates (u, v) are not generally isothermal
coordinates of PK(u, v).
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(ii) When a =
1
H

=
2λ

L + N
,

ĒH = λ− 2 · 2λL

L + N
+

4λ2

(L + N)2
· L2 + M2

λ

=
λ{(N − L)2 + 4M2}

(L + N)2
, (2.20)

F̄H = −2 · 2λM

L + N
+

4λ2

(L + N)2
· M(L + N)

λ
= 0,

ḠH = λ− 2 · 2λN

L + N
+

4λ2

(L + N)2
· M2 + N2

λ

=
λ{(N − L)2 + 4M2}

(L + N)2
, (2.21)

L̄H = L− 2λ

L + N
· L2 + M2

λ
=

LN − L2 − 2M2

L + N
, (2.22)

M̄H = M − 2λ

L + N
· M(L + N)

λ
= −M, (2.23)

N̄H = N − 2λ

L + N
· M2 + N2

λ
=

LN −N2 − 2M2

L + N
. (2.24)

This shows that (u, v) is an isothermal coordinate system of the parallel
H-surface PH(u, v) as well.

3 Delaunay surfaces

3.1 Parallel H-surface of Delaunay surfaces

The locus of a focus of an ellipse as the point of contact rolls along a straight
line in a plane will be called the undulary. The locus of a focus of a hyperbola
as the point of contact rolls along a straight line in a plane forms the curve
which we shall call the nodary. Rotating each of the roulettes about its
axis of rolling produces five types of surfaces with constant mean curvature
in Euclidean three space R3, called Delaunay surfaces: the catenoids (by
rolling a parabola), unduloids, nodoids, right circular cylinders (which are
unduloids made by rolling a circle), and spheres (by rolling a degenerate
ellipse of eccentricity 0). Delaunay surfaces are represented in terms of
elliptic integrals, and they are periodic.

In this subsection, we show what parallel H-surface of Delaunay surfaces
are and find the relation between the original surface and its parallel H-
surface.

Proposition 3.1. Let H be a positive constant. The mean curvature of
the surface of revolution of the planar curve C : y = y(x), (y > 0) around
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1
H

~n

1
H

~n

Figure 1: Normal vector along a nodoidal profile curve.

the axis of x is equal to the constant H if and only if y satisfies one of the
following differential equations:

y2 − 1
H
· y√

1 + y′2
= 0, (3.1)

y2 − 1
H
· y√

1 + y′2
+ b2 = 0, b =

1
2H

, (3.2)

y2 − 1
H
· y√

1 + y′2
+ b2 = 0,

1
2H

> b > 0, (3.3)

y2 − 1
H
· y√

1 + y′2
− b2 = 0, (3.4)

where b is a constant. The solution of (3.1) represents a half circle. The
solution of (3.2) represents part of a straight line. The solution of (3.3)
represents part of an undulary, and the solution of (3.4) represents part of
a nodary.

Proof. See [4], [5] and [8].

Now we think about the parallel H-surfaces of Delaunay surfaces. Clearly,
the H-surface of a Delaunay surface is again a Delaunay surface.

Theorem 3.2. The parallel H-surface of an unduloid, resp. nodoid, is con-
gruent to the original unduloid, resp. nodoid.

Proof. From (3.3) and (3.4), we have

y2 − 1
H
· y√

1 + y′2
± b2 = 0.

We calculate the values of y such that y′ = 0, i.e. the extremal values. See
Figure 1. Substituting y′ = 0 into (3.3), we get

y2 − y

H
± b2 = 0 ⇐⇒ y =

1±√1∓ 4H2b2

2H
.

At these extremal points, the values of y at the corresponding points on the
parallel H-surface are

1±√1∓ 4H2b2

2H
− 1

H
=
−1±√1∓ 4H2b2

2H
.
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Since the H-surface also has extremal values at these points, its profile
curve equation at y′ = 0 becomes a quadratic equation with solutions
−1±√1∓ 4H2b2

2H
:

y2 +
y

H
± b2 = 0.

Since b <
1

2H
, we find

y =
−1±√1− 4H2b2

2H
< 0.

i.e. the value of y for the H-surface of an unduloid is negative. Now, since the
Delaunay H-surface revolves around the same axis as the original Delaunay
surface, we can change y to −y and get the same surface, and then

y2 − y

H
± b2 = 0.

This is the equation

y2 − 1
H
· y√

1 + y′2
± b2 = 0

with y′ = 0 substituted in. Therefore, we find that the H-surfaces of undu-
loids and nodoids are congruent to the original surfaces, and the values of b
are also the same.

Remark . The simplest example of Proposition 3.2 occurs with the right
circular cylinders, which are a special case of the unduloids. The right
circular cylinder is parametrized by u and v, i.e.

P (u, v) = (r cosu, r sinu, v), (3.6)

where r is a constant. Using (3.6), we calculate a unit normal vector n and
mean curvature H:

n =
Pu × Pv

|Pu × Pv| = (cosu, sinu, 0), (3.7)

H =
−r

2r2
= − 1

2r
. (3.8)

Using (3.7) and (3.8), we can calculate the parameter of H-surface of the
right circular cylinder:

P̄ (u, v) = P (u, v) +
1
H
· n

= (r cosu, r sinu, v)− 2r(cosu, sinu, 0)
= (−r cosu, −r sinu, v).

Thus, we find that the parallel H-surface of the right circular cylinder is
congruent to the original surface.
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Remark . The simplest example of constant mean curvature surfaces for
which there do not exist parallel surfaces occurs with spheres. The sphere
is parametrized by u and v, i.e.

P (u, v) = (r cosu cos v, r cosu sin v, r sinu), (3.9)

where r is a constant. Using (3.9), we calculate the unit normal vector n,
mean curvature H and Gaussian curvature K:

n =
Pu × Pv

|Pu × Pv| = (− cosu cos v, − cosu sin v, − sinu), (3.10)

H =
r3 cos2 u + r3 cos2 u

2r4 cos2 u
=

1
r
, (3.11)

K =
r2 cos2 u

r4 cos2 u
=

1
r2

. (3.12)

Using (3.11) and (3.12), we get H2 −K = 0. This means that all points in
the sphere are umbilic points. Using (3.10), (3.11) and (3.12), we calculate
the coordinate of H-surface of the sphere:

P̄ (u, v) = P (u, v) +
1
H
· n = (0, 0, 0).

Since the H-surface is just one point, there does not exist a parallel H-surface
for the sphere.

3.2 Undularies and unduloids

In this and next subsection, we derive explicit formulas for unduloids and
nodoids, and their parallel H-surface and K-surface. We use these explicit
formulas to make the computer graphics of these surfaces in this EG-Model.

Now the ellipse in the left-hand side of Figure 2 corresponds with the
other in the right-hand side. We calculate the distances between the points
in the right figure. Now we assume a > b > 0. From the right figure, we
find

PF 2
1 = (a cos θ +

√
a2 − b2)2 + b2 sin2 θ

= (a2 − b2)
(

cos2 θ +
2a cos θ√
a2 − b2

+
a2

a2 − b2

)

= (a2 − b2)
(

cos θ +
a√

a2 − b2

)2

.

From the assumption, since a > b and
a√

a2 − b2
> 1, we find

cos θ +
a√

a2 − b2
> 0
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Figure 2: Rolling of an ellipse.

and get

PF1 =
(

cos θ +
a√

a2 − b2

)√
a2 − b2 = a +

√
a2 − b2 · cos θ. (3.14)

Similarly,
PF2 = a−

√
a2 − b2 · cos θ. (3.15)

Let Q1 be the foot of a perpendicular from F1 to the axis of x and let Q2

be the foot of a perpendicular from F2 to the axis of x. Now we calculate
the distances F1Q1 and F2Q2:

F1Q1
2 =

∣∣∣∣
b cos θ

a sin θ

√
a2 − b2 − b

sin θ

∣∣∣∣
2

(√
b2 cos2 θ

a2 sin2 θ
+ 1

)2

=
b2(a2 − b2) cos2 θ + a2b2 + 2ab2

√
a2 − b2 cos θ

a2 sin2 θ + b2 cos2 θ
, (3.16)

F2Q2
2 =

∣∣∣∣−
b cos θ

a sin θ

√
a2 − b2 − b

sin θ

∣∣∣∣
2

(√
b2 cos2 θ

a2 sin2 θ
+ 1

)2

=
b2(a2 − b2) cos2 θ + a2b2 − 2ab2

√
a2 − b2 cos θ

a2 sin2 θ + b2 cos2 θ
. (3.17)
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Using (3.14)–(3.17), we get

sin2 6 F1PQ1 =
F1Q1

2

PF1
2 =

b2

a2 sin2 θ + b2 cos2 θ
,

sin2 6 F2PQ2 =
F2Q2

2

PF2
2 =

b2

a2 sin2 θ + b2 cos2 θ
.

Since 6 F1PQ1 and 6 F2PQ2 are acute angles, we get

6 F1PQ1 = 6 F2PQ2 := α.

We immediately get

sin2 α =
b2

a2 sin2 θ + b2 cos2 θ
,

cos2 α = 1− sin2 α =
(a2 − b2) sin2 θ

a2 sin2 θ + b2 cos2 θ
,

⇐⇒





sinα =
b√

a2 sin2 θ + b2 cos2 θ
> 0,

cosα =
√

a2 − b2 · sin θ√
a2 sin2 θ + b2 cos2 θ

.

(3.19)

And, since the distance of P (θ) = OP is equal to an arc P0P of the ellipse,
we get

OP = P (θ) =
∫ θ

0

√
a2 sin2 ϕ + b2 cos2 ϕ dϕ (3.20)

Using (3.14), (3.19) and (3.20), F1 is parametrized as ϕ, i.e.

x = OP + PF1 · cosα

=
∫ θ

0

√
a2 sin2 ϕ + b2 cos2 ϕ dϕ +

(a +
√

a2 − b2 · cos θ)
√

a2 − b2 sin θ√
a2 sin2 θ + b2 cos2 θ

,

(3.21)
y = PF1 · sinα

=
b(a +

√
a2 − b2 · cos θ)√

a2 sin2 θ + b2 cos2 θ
. (3.22)

Using (3.21) and (3.22), we can draw three parallel surfaces of an undulary
and unduloid, using Mathematica. See the file delaunay.nb in this EG-
Model.
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3.3 Nodaries and nodoids

Now we think about the curve C̃ of the solution parametrized as an arc
length s:

x = x(s), y = y(s).

Now since
(

dx

ds

)2

+
(

dy

ds

)2

= 1,

as ϕ is a function of class C1 of a parameter s, we can change

dx

ds
= sin ϕ(s),

dy

ds
= cosϕ(s).

Since we find

1 + f ′2 = 1 +
(

dy

dx

)2

=

(
dx

ds

)2

+
(

dy

ds

)2

(
dx

ds

)2 =
1

sin2 ϕ
, (3.23)

substituting (3.23) into (3.4), we get

y2 − | sinϕ|
H

y − b2 = 0.

Changing
1
H

= 2A, we get

y2 − 2A| sinϕ|y − b2 = 0 ⇐⇒ y = A| sinϕ| ±
√

A2 sin2 ϕ + b2.

Changing b2 = A2β, we get

y = A| sinϕ| ± |A|
√

sin2 ϕ + β, β > 0.

From the assumption of y > 0, we have to think about two cases:

when A > 0, y = A(| sinϕ|+
√

sin2 ϕ + β),

when A < 0, y = −A(−| sinϕ|+
√

sin2 ϕ + β).

So, assuming the following:

when A > 0,
dx

ds
= sin ϕ ≥ 0,

when A < 0,
dx

ds
= sin ϕ ≤ 0,
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in spite of a sign of A, we get

y = |A|(sinϕ +
√

sin2 ϕ + β).

Changing |A| = a, we get

y = a(sinϕ +
√

sin2 ϕ + β), (3.24)

β =
b2

a2
.

From (3.23), since we have
dx

dy
= tanϕ,

we get

x =
∫

tan ϕ · dy

ds
ds = y tanϕ−

∫
y
d tanϕ

ds
ds

= y tanϕ−
∫

y

cos2 ϕ
dϕ,

x = x0 + y tanϕ−
∫ ϕ

0

y

cos2 ϕ
dϕ, (3.25)

x0 = x|ϕ=0.

Substituting (3.24) into (3.25), we get

x = x0 + a(sinϕ +
√

sin2 ϕ + β) tanϕ− a

∫ ϕ

0

sinϕ +
√

sin2 ϕ + β

cos2 ϕ
dϕ.

By the way, as ω = cosϕ, since we have
∫ ϕ

0

sinϕ

cos2 ϕ
dϕ =

∫ cos ϕ

1

−1
ω2

dω =
[

1
ω

]cos ϕ

1

=
1

cosϕ
− 1, (3.27)

tanϕ sinϕ =
sin2 ϕ

cosϕ
=

1
cosϕ

− cosϕ, (3.28)

∫ ϕ

0

√
sin2 ϕ + β

cos2 ϕ
dϕ =

[
tanϕ ·

√
sin2 ϕ + β

]ϕ

0

−
∫ ϕ

0
tanϕ

sinϕ cosϕ√
sin2 ϕ + β

dϕ

= tanϕ ·
√

sin2 ϕ + β −
∫ ϕ

0

sin2 ϕ√
sin2 ϕ + β

dϕ, (3.29)

from (3.27), (3.28) and (3.29), we get

x = x0 + a

(
a− cosϕ +

∫ ϕ

0

sin2 ψ√
sin2 ψ + β

dψ

)
. (3.30)

Using (3.24) and (3.30), we can draw three parallel surfaces of a nodary
and nodoid, using Mathematica. Again see the file delaunay.nb in this EG-
Model.
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4 Wente tori

In this section, we shall give explicit formulas for the original Wente tori
and parallel H-surfaces of Wente tori, based on [19]. We use these explicit
formulas to make computer graphics of these surfaces. Later, we shall as-

sume that the mean curvature H is
1
2
, but for now we shall only assume

that H is a nonzero constant. Let P : C/Γ → R3 be a conformal immersion
of class C∞ where C/Γ is a compact 2-dimensional torus determined by the
2-dimensional lattice Γ. Note that (u, v) are then isothermal coordinates
on C/Γ. The fundamental forms and the Gaussian and mean curvature
functions are

I = λ(du2 + dv2), II = Ldu2 + 2Mdudv + Ndv2,

K =
LN −M2

λ2
, H =

L + N

2λ
.

Since H is constant, the Hopf differential Φ dz2 is holomorphic, where Φ =
1
2
(L−N)− iM and z = u + iv. Thus Φ is constant and P has no umbilics

points. Moreover, by a change of the coordinates (u, v), we may assume
Φ = 1 and so

M = 0, L = ef + 1, N = ef − 1, (4.1)

and (u, v) become curvature line parameters, where f : C/Γ → R is defined
by

HE = ef ⇐⇒ Hλ = ef . (4.2)

We have the equations of Gauss and Weingarten:

Puu =
1
2
fuPu − 1

2
fvPv − (ef + 1)n, (4.3)

Pvv = −1
2
fuPu +

1
2
fvPv − (ef − 1)n, (4.4)

Puv =
1
2
fvPu +

1
2
fuPv, (4.5)

nu = H(1 + e−f )Pu, nv = H(1− e−f )Pv, (4.6)
∆f + 4H sinh f = 0, (4.7)

where ∆ =
∂2

∂u2
+

∂2

∂v2
and n : C/Γ → R3 is the unit normal vector field, i.e.

the Gauss map. Therefore the problem of finding constant mean curvature
immersed tori in R3 reduces to solving the PDE system (4.3)–(4.7) by real
analytic functions f, n, P defined on R2 and doubly periodic with respect
to some fundamental lattice Γ ⊂ R2. In the case of the original Wente tori,
in Walter’s notation, the solution f of (4.7) is:

f = 4 tanh−1{γ · γ̄ · cnk(αu) · cnk̄(ᾱv)}, (4.8)

19



where cnk denotes the Jacobi amplitudinus cosinus function with modulus
k, and k = sin θ, k̄ = sin θ̄, for θ, θ̄ ∈

(
0,

π

2

)
and θ + θ̄ <

π

2
, and

γ =
√

tan θ, γ̄ =
√

tan θ̄, (4.9)

α =

√
4H

sin 2θ̄

sin 2(θ + θ̄)
, ᾱ =

√
4H

sin 2θ

sin 2(θ + θ̄)
.

Now we assume H =
1
2
.

Lemma 4.1 (Walter). The set of all original Wente tori are in a one-to-

one correspondence with the set of reduced fractions
`

n
∈ (1, 2).

For each
`

n
, we call the corresponding Wente torus W`/n. Following

Walter’s notation, each W`/n has either one or two planar geodesic loops in
the central symmetry plane: two loops if ` is odd, and one loop if ` is even.
Each loop can be partitioned into 2n congruent curve segments, and ` is the
total winding order of the Gauss map along each loop. The conditions for
double periodicity of the position vector function P are expressed in terms
of θ and θ̄. Walter determined that there is exactly one

θ̄ ∼= 65.354955◦

that solves one period problem, and θ̄ is independent of
`

n
. The solution θ

in the next lemma solves the other remaining period problem:

Lemma 4.2 (Walter). For any
`

n
∈ (1, 2), there is exactly one solution

θ ∈
(
0,

π

2
− θ̄

)
of

∫ π
2

0

1 + tan θ tan θ̄ cos2 ϕ

1− tan θ tan θ̄ cos2 ϕ

dϕ√
1− sin2 θ sin2 ϕ

=
`

n

π

2

√
sin 2θ̄

sin 2(θ + θ̄)
, (4.11)

and for any
`

n
/∈ (1, 2) there is no solution θ ∈

(
0,

π

2
− θ̄

)
of (4.11).

Remark . This is proven in [19], and we can verify this by a nonrigorous
numerical computation: setting

µ(θ) =
√

sin 2(θ + θ̄)
∫ π

2

0

1 + tan θ tan θ̄ cos2 ϕ

1− tan θ tan θ̄ cos2 ϕ

dϕ√
1− sin2 θ sin2 ϕ

,

we find that µ(θ) is a monotone function for 0 < θ <
π

2
− θ̄.
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Lemma 4.3. Let W`/n have range [Tmin, Tmax] for K, then no other Wˆ̀/n̂

with ˆ̀/n̂ 6= `/n has the same range for K.

Proof. Using (1.7), (4.1) and (4.2), we calculate the Gaussian curvature K:

K =
LN −M2

EG
=

e2f − 1
4e2f

=
1− e−2f

4
. (4.12)

Since
−1 ≤ cnk(αu) ≤ 1, −1 ≤ cnk̄(ᾱv) ≤ 1,

we get
−γγ̄ ≤ γγ̄ · cnk(αu) · cnk̄(ᾱv) ≤ γγ̄. (4.14)

With Γ defined by
Γ
4

= tanh−1 γγ̄, (4.15)

equation (4.8) and inequality (4.14) imply that

−Γ ≤ f ≤ Γ. (4.16)

Substituting (4.16) into (4.12), we get that the range of K is precisely
[
1− e−2Γ

4
,
1− e2Γ

4

]
. (4.17)

From (4.9), (4.15) and (4.17), we find that the range of K is determined by
θ. Therefore, from Lemma 4.1 and Lemma 4.2, no two distinct W`/n’s can
have the same range.

Using Lemma 4.3, we can find the following fact.

Theorem 4.4. For all
`

n
, the parallel H-surface W`/n of the Wente torus

W`/n is the same as the original Wente torus, i.e. W`/n is congruent to
W`/n.

Proof. The surfaces W`/n are the complete collection of constant mean cur-
vature tori foliated by planar principal curves (see [16]). So, from Lemma
2.6, we find that the parallel H-surface W`/n of the Wente torus W`/n is
another Wente torus Wˆ̀/n̂ = W`/n. So we need only calculate the range of
the Gaussian curvature K̄H of the parallel H-surface W`/n and see that it
equals the range of K for W`/n. Then Lemma 4.3 implies W`/n is the same
surface as W`/n. By (2.20)–(2.24), we get

K̄H =
L̄HN̄H − M̄2

H

ĒHḠH

=
{(LN − L2 − 2M2)(LN −N2 − 2M2)−M2(L + N)2}(L + N)2

λ{(N − L)2 + 4M2}2
.

(4.18)
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Substituting (4.1) and (4.2) into (4.18), we get

K̄H =
1− e2f

4
.

Using (4.16), we get that the range of K̄H is precisely
[
1− e−2Γ

4
,
1− e2Γ

4

]
. (4.19)

Comparing (4.17) with (4.19), from Lemma 4.3 we find that the parallel H-
surface of the Wente torus is congruent to the original Wente torus W`/n.

Proposition 4.5 (Walter). If one allows two simple, noniterated integrals
of one real variable, then P : R2 → R3 can be represented explicitly in
terms of trigonometric functions. We obtain the following representation
P : R2 → R3 with (nonisothermic) curvature line parameters:

P =
(

Z cos(w − j) +
cosw

2H
, Z sin(w − j) +

sinw

2H
, x3

)
, (4.20)

where

Z =

√
2
H

1
ᾱ2

· {(ᾱ
2 − b)γ2 cos2 u + p}γ̄ cos v − {pγ2 cos2 u + (ᾱ2 + b)}γ cosu√

p− 2bγ2 cos2 u− pγ4 cos4 u · (1− T cosu cos v)
,

w =
√

H
2
α

∫ u

0

1 + T 2 cos2 t

1− T 2 cos2 t

dt√
1− k2 sin2 t

,

j =





tan−1

(
1√
H

α

2
tanu ·

√
1− k2 sin2 u

)
+ (m− 1)π,

[
(2m− 3)π

2
≤ u <

(2m− 1)π
2

, m ∈ N

]
,

x3 =
1√
H

1
ᾱ
·
{

2T
cosu sin v

√
1− k̄2 sin2 v

1− T cosu cos v
+

1
γ̄

∫ v

0

1− 2k̄2 sin2 t√
1− k̄2 sin2 t

dt

}
,

T = γγ̄.

Proof. See [19].

Remark . To draw Wente tori W`/n, we give the relation between W`/n and
the values of θ, and the ranges of u, v. For the values of θ, see [11]. The
range of v is fixed: −π

2
≤ v ≤ π

2
, and the range of u is determined by the

number of fundamental pieces. If g is the number of fundamental pieces,

the range of u is −π

2
≤ u ≤ (2g − 1)π

2
.

Using (4.20), we can draw parallel surfaces for three Wente tori. See the
file wente.nb in this EG-Model.
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W`/n θ g range of u range of v

W4/3 12.7898◦ 3 −π/2 ≤ u ≤ 5π/2 −π/2 ≤ v ≤ π/2
W3/2 17.7324◦ 4 −π/2 ≤ u ≤ 7π/2 −π/2 ≤ v ≤ π/2
W6/5 8.0983◦ 5 −π/2 ≤ u ≤ 9π/2 −π/2 ≤ v ≤ π/2

Table 1: values for solution θ (the range of u and v are computed using the
value H = 1/2).

5 A remark on bubbletons and Smyth surfaces

In this section, we briefly remark on the parallel surfaces of bubbletons and
Smyth surfaces. Rigorous definitions of these surfaces can be found in the
references.

Remark . The bubbletons with cylinder ends and one set of lobes are self-
parallel. (See the software ”CMCLab” of N. Schmitt [12], or the paper of
Shimpei Kobayashi [15] on bubbletons.) However, bubbletons with Delau-
nay ends and one set of lobes are not self-parallel, because the set of lobes
will be shifted with respect to the bulges and necks of the Delaunay ends on
the parallel surface.

Bubbletons with cylinder ends and two sets of lobes are also not self-
parallel in general. For example, if one set of lobes has two lobes and the
other has three lobes, on the parallel surface one set of lobes will be rotated
by 90 degrees and the other will be rotated by 60 degrees. So the parallel
H-surface is not congruent to the original surface.

These bubbleton examples have no umbilic points, so they show us that
being free of umbilic points does not imply the surface is self-parallel.

Remark . Smyth surfaces are simply-connected constant mean curvature
surfaces with an internal rotational symmetry. See [7] and [13]. Smyth sur-
faces are also clearly not self-parallel, since Smyth surfaces have an umbilic
point: From the proof of Corollary 2.8, we know that the parallel H-surface
is not immersed with respect to the coordinate frame given by the original
Smyth surface.
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