TRIPLY PERIODIC MINIMAL SURFACES OF GENUS 4

SHOICHI FUJIMORI AND TOSHIHIRO SHODA

It is known that a compact minimal surface in a 3-dimensional flat torus \(T^3 = \mathbb{R}^3 / \Lambda \) can be regarded as a triply-periodic minimal surface in \(\mathbb{R}^3 \).

Let \(M \) be a compact Riemann surface and \(f : M \to T^3 \) a conformal minimal surface. Then \(f \) can be represented as follows (the Weierstrass representation):

\[
(*) \quad f(p) = \text{Re} \int_{p_0}^p \Phi \quad (\text{mod } \Lambda), \quad \Phi = \left(\frac{1 - g^2}{i(1 + g^2)} \right) \eta,
\]

where \(g \) is a meromorphic function and \(\eta \) is a holomorphic 1-form on \(M \) so that

\[
(1 + |g|^2)^2 |\eta|^2
\]
gives a Riemannian metric on \(M \), and

\[
(P) \quad \left\{ \text{Re} \oint_\gamma \Phi \bigg| \gamma \in H_1(M, \mathbb{Z}) \right\} \quad \text{is a sublattice of } \Lambda.
\]

For such a minimal surface \(f \), we define \(f_\theta \) as

\[
f_\theta = \text{Re} \int_{p_0}^p e^{i\theta} \Phi.
\]

Note that \(f_\theta \) is defined only on the universal cover of \(M \) in general, even though \(f = f_0 \) is well-defined on \(M \) itself, in \(T^3 \). If \(f_\theta \) is well-defined on \(M \) for some torus \(\mathbb{R}^3 / \Lambda_\theta \), then it is called an associate surface of \(f \). In particular, the associate surface \(f_{\pi/2} \), if well-defined in a torus, is called the conjugate surface of \(f \). Nagano and Smyth [3] gave a criterion for the existence of associate surfaces. Namely, every element of the one parameter family of isometric minimal surfaces is either an associate surface or else is dense in \(\mathbb{R}^3 \).

Meeks [2] introduced the following:

Definition 1. \(f : M \to T^3 \) is said to satisfy property \(P \) if \(f_\theta \) is well-defined on \(M \) (for some torus) for a countable dense set of angles \(\theta \) (the tori depending on \(\theta \)).

In [6], the second author constructed a new example of a minimal surface into a flat torus which has a conjugate surface and satisfies property \(P \), as follows:

Let \(M \) be a trigonal Riemann surface of genus 4 defined by \(w^3 = z^6 - 1 \). (See Figure 1). We set

\[
g = z, \quad \eta = \frac{dz}{w^2}
\]

Date: February 16, 2006.

2000 **Mathematics Subject Classification.** 53A10, 53C42.

Key words and phrases. minimal surface, triply periodic surface.
and Λ is given (defined) by the beta function $B(a,b) = \int_0^1 t^{a-1}(1-t)^{b-1}dt$ as

$$
\Lambda = \begin{pmatrix}
A & A/2 & 0 \\
0 & \sqrt{3}A/2 & 0 \\
0 & 0 & 2^{-2/3}A
\end{pmatrix}, \quad \text{where} \quad A = \frac{1}{2} B \left(\frac{1}{3}, \frac{1}{6} \right)
$$

Then f defined as in (\ast) is well-defined on M into \mathbb{R}^3/Λ. Also, f has a conjugate surface and satisfies the property P for lattices Λ_θ.

Note that several examples which satisfy property P and have the linear symmetries of a cube (the expression “linear symmetries of a cube” is precisely defined in [2]) are known. For example, Schwarz surfaces [5] and A. Schoen’s surfaces [4]. However, our trigonal minimal surface does not have the linear symmetries of a cube (see Figure 2).

M can be represented by the above three Riemann spheres. Thick points are branch points of the branched 3-covering $(z,w) \mapsto z$. Thick lines and curves indicate the planar geodesics, because the Hopf differential is real on these lines and curves (See [1]).
Left: A piece \(f(D_1 \cup D_2) \) of the fundamental piece of \(f \), which is bounded by six planar geodesics, where
\[
D_1 = \{(z, \sqrt[6]{z^6-1}) \in M \mid |z| \leq 1, 0 \leq \arg z \leq \pi/2\} \quad \text{and} \quad D_2 = \{(z, e^{2\pi i/3} \sqrt[6]{z^6-1}) \in M \mid |z| \geq 1, -\pi/6 \leq \arg z \leq \pi/3\}.
\]
See the shaded parts in Figure 1. Right: The fundamental piece of \(f \) for the translational symmetry group, which consists of twelve copies of \(f(D_1 \cup D_2) \) produced by reflections along planar geodesics.

By the right hand side of Figure 2, we see that \(f \) has self-intersections.

References

(Fujimori) Department of Mathematics, Kobe University, Kobe 657-8501 Japan
E-mail address: fujimori@math.kobe-u.ac.jp

(Shoda) Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan
E-mail address: tshoda@math.kyushu-u.ac.jp